Skip to main content

Advertisement

Log in

Corrosion resistance and antibacterial activity of different zones in TA2 weldment by TIG welding

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The corrosion resistance behavior of TA2 pure titanium processed by tungsten inert gas (TIG) welding was investigated in artificial saliva solution at 37 °C. By metallographic examination, electrochemical measurement technology, and electrochemical impedance spectroscopy (EIS), the corrosion resistance of the base metal (BM), heat-affected zone (HAZ), and weld metal (WM) were investigated. Metallographic examination experiments show that welding process would cause the growth of grain size. In addition, phase change happens in the HAZ and WM. The change of grain size and phase would influence the generation of the original passive film. The electrochemical tests show that the BM, HAZ, and WM are all equipped with good corrosion resistance. The welded joint shows a better corrosion resistance than the original TA2. It is shown that the BM with the lowest corrosion potential and the biggest corrosion current has a worse corrosion resistance than WM as well as HAZ. Silver (Ag) nanoparticles can be distributed on the WM zone of Ti uniformly. The WM zone of Ti with Ag coating considerably enhances the antibacterial activity of Ti implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xu TC, Peng XD, Jiang JW, Chen J, Yi HY. Progress in welding of titanium alloy and dissimilar materials. Chin J Rare Met. 2013;38(4):711.

    Google Scholar 

  2. Wang H, Fan YJ, Li L, Chen ZH, Yang HB, Cao JM. Influence of drawing deformation on microstructure of TC4 wire after welding. Chin J Rare Met. 2013;37(3):506.

    Google Scholar 

  3. Kim MG. Fatigue properties on the failure mode of a dental implant in a simulated body environment. Met Mater Int. 2011;17(5):705.

    Article  CAS  Google Scholar 

  4. Peng J, Zhou CY, Dai Q, He XH, Tang ZX, Du YQ. Strain rate sensitivity of commercially pure titanium TA2 at room temperature and revising of hollomon empirical formula, Rare Met Mat Eng. 2013;42(3):483.

    CAS  Google Scholar 

  5. Wang Q, Zhang PZ, Wei DB, Wang RN, Chen XH, Wang HY. Microstructure and corrosion resistance of pure titanium surface modified by double-glow plasma surface alloying. Mater Design. 2013;1402:49.

    Google Scholar 

  6. Qi YL, Deng J, Hong Q, Zeng LY. Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet. Mater Sci Eng A. 2000;280(1):177.

    Article  Google Scholar 

  7. Cvetkovic RP, Popovic O, Burzic M, Jovicic R, Macura SK, Buyukyildirim G. The effect of welding process and shielding atmosphere on the AlMg4.5Mn weld metal properties. Int J Mater Res. 2013;104(1):18.

    Article  CAS  Google Scholar 

  8. Blasco-Tamarit E, Igual-MunOz A, GarcIA AntON J, Garciacarc DM. Galvanic corrosion of titanium coupled to welded titanium in LiBr solutions at different temperatures. Corros Sci. 2009;51(5):1095.

    Article  CAS  Google Scholar 

  9. Atapour M, Fathi MH, Shamanian M. Corrosion behavior of Ti–6Al–4V alloy weldment in hydrochloric acid. Mater Corros. 2012;63(2):134.

    Article  CAS  Google Scholar 

  10. Orsi IA, Raimundo LB, Bezzon OL, Nóbilo MA, Kuri SE, Rovere CA, Pagnano VO. Evaluation of anodic behavior of commercially pure titanium in tungsten inert gas and laser welds. J Prosthodont. 2011;20(8):628.

    Article  Google Scholar 

  11. Cai Z, Shafer T, Watanabe I, Nunn ME, Okabe T. Electrochemical characterization of cast titanium alloys. Biomaterials. 2003;24(2):213.

    Article  CAS  Google Scholar 

  12. Stern M, Geary AL. Electrochemical polarization I. A theoretical analysis of the shape of polarization curves. J Electrochem Soc. 1957;104(1):56.

    Article  CAS  Google Scholar 

  13. Buddery A, Kelly P, Drennan J, Dargusch M. The effect of contamination on the metallurgy of commercially pure titanium welded with a pulsed laser beam. J Mater Sci. 2010;46(8):2726.

    Article  CAS  Google Scholar 

  14. Shukla AK, Balasubramaniam R, Bhargava S. Properties of passive film formed on CP titanium, Ti–6Al–4 V and Ti–13.4Al–29Nb alloys in simulated human body conditions. Intermetallics. 2005;13(6):631.

    Article  CAS  Google Scholar 

  15. González JEG, Mirza-Rosca JC. Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. J Electroanal Chem. 1999;471(2):109.

    Article  Google Scholar 

  16. Hodgson AWE, Mueller Y, Forster D, Virtanen S. Electrochemical characterisation of passive films on Ti alloys under simulated biological conditions. Electrochim Acta. 2002;47(12):1913.

    Article  CAS  Google Scholar 

  17. Menini R, Dion MJ, So SKV, Gauthier M, Lefebvre LP. Surface and corrosion electrochemical characterization of titanium foams for implant applications. J Electrochem Soc. 2006;153(1):B13.

    Article  CAS  Google Scholar 

  18. Fonseca C, Barbosa MA. Corrosion behaviour of titanium in biofluids containing H2O2 studied by electrochemical impedance spectroscopy. Corros Sci. 2001;43(3):547.

    Article  CAS  Google Scholar 

  19. Chang YY, Huang HL, Lai CH, Hsu JT, Shieh TM, Wu AYJ, Chen CL. Analyses of antibacterial activity and cell compatibility of titanium coated with a Zr–C–N film. PloS One. 2013;8(2):e56771.

    Article  CAS  Google Scholar 

  20. Kronstrom M, Svenson B, Hellman M, Persson GR. Early implant failures in patients treated with Branemark system titanium dental implants, a retrospective study. Int J Oral Maxillofac Implants. 2001;16(2):201.

    CAS  Google Scholar 

  21. Huang HL, Chang YY, Weng JC, Chen YC, Lai CH, Shieh TM. Anti-bacterial performance of zirconia coatings on titanium implants. Thin Solid Films. 2013;528:151.

    Article  CAS  Google Scholar 

  22. Wang X, Wang G, Liang J, Cheng J, Ma W, Zhao Y. Staphylococcus aureus adhesion to different implant surface coatings: an in vitro study. Surf Coat Technol. 2009;203(22):3454.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 81070871).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-Yun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, YP., Li, CY. & Zhang, LY. Corrosion resistance and antibacterial activity of different zones in TA2 weldment by TIG welding. Rare Met. 39, 1449–1456 (2020). https://doi.org/10.1007/s12598-014-0395-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0395-z

Keywords

Navigation