Skip to main content

Advertisement

Log in

Mechanical, tribological, corrosion and tribocorrosion properties of ZrNxOy coatings on Ti–45Nb alloys by multi-arc ion plating

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, four ZrNxOy coatings were deposited on the surface of Ti–45Nb alloy by multi-arc ion plating technology at different N/O ratios. The effects of oxygen content on the mechanical properties, wear resistance, electrochemical corrosion and tribocorrosion properties of the coatings were investigated separately. As the increasing of O2 ratio, the hardness value decreases from 30.2 to 9.7 GPa; the Young’s modulus values decrease from 322.1 to 172.2 GPa. The H/E and H3/E2 values showed a decreasing trend with the increasing O2, which indicates a gradual decrease in the load-bearing capacity of the coatings. The critical load of these coatings in scratch test ranges from 12 N, 7.2 N, 5 N to 3N. In the friction test, both the TiNb alloy and coating exhibited predominantly abrasive and adhesive wear. The relatively low wear rate of the ZrN coating demonstrated its excellent wear resistance; however, the wear-resisting property of the ZrNxOy coating gradually decreases as the oxygen content increases, and ZrO2 coating showed the poorest wear resistance. On the contrary, the higher the oxygen content, the better the electrochemical corrosion resistance, and ZrO2 coating showed the excellent corrosion resistance. The results of tribocorrosion test show that the ZrNxOy coating has better wear resistance in simulated body fluid solution compared to Ti–Nb alloys. The experimental results and design concepts of the paper can provide a better understanding of the preparation of medical titanium alloy surface functional coatings with good comprehensive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Data availability

Data can be obtained by requesting the corresponding author.

References

  1. Xie F, He X, Yu J, Wu M, He X, Qu X (2016) Fabrication and characterization of porous Ti–4Mo alloy for biomedical applications. J Porous Mater 23(3):783–790. https://doi.org/10.1007/s10934-016-0133-z

    Article  CAS  Google Scholar 

  2. Çaha I, Alves AC, Kuroda PAB, Grandini CR, Pinto AMP, Rocha LA, Toptan F (2020) Degradation behavior of Ti–Nb alloys: corrosion behavior through 21 days of immersion and tribocorrosion behavior against alumina. Corros Sci 167:108488. https://doi.org/10.1016/j.corsci.2020.108488

    Article  CAS  Google Scholar 

  3. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants: a review. Prog Mater Sci 54(3):397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  CAS  Google Scholar 

  4. Eisenbarth E, Velten D, Muller M, Thull R, Breme J (2004) Biocompatibility of beta-stabilizing elements of titanium alloys. Biomaterials 25(26):5705–5713. https://doi.org/10.1016/j.biomaterials.2004.01.021

    Article  CAS  PubMed  Google Scholar 

  5. Zhang LC, Chen LY (2019) A review on biomedical titanium alloys: recent progress and prospect. Adv Eng Mater 21(4):1801215. https://doi.org/10.1002/adem.201801215

    Article  CAS  Google Scholar 

  6. Bocchetta P, Chen LY, Tardelli JDC, Reis ACd, Almeraya-Calderón F, Leo P (2021) Passive Layers and corrosion resistance of biomedical Ti–6Al–4V and β-Ti Alloys. Coatings 11(5):487. https://doi.org/10.3390/coatings11050487

    Article  CAS  Google Scholar 

  7. Geetha M, Kamachi Mudali U, Gogia AK, Asokamani R, Raj B (2004) Influence of microstructure and alloying elements on corrosion behavior of Ti–13Nb–13Zr alloy. Corros Sci 46(4):877–892. https://doi.org/10.1016/s0010-938x(03)00186-0

    Article  CAS  Google Scholar 

  8. Tardelli JDC, Bolfarini C, Candido A (2020) Comparative analysis of corrosion resistance between beta titanium and Ti-6A-4V alloys: a systematic review. J Trace Elem Med Biol 62:126618. https://doi.org/10.1016/j.jtemb.2020.126618

    Article  CAS  Google Scholar 

  9. Ronoh K, Mwema F, Dabees S, Sobola D (2022) Advances in sustainable grinding of different types of the titanium biomaterials for medical applications: a review. Biomed Eng Adv 4:100047. https://doi.org/10.1016/j.bea.2022.100047

    Article  Google Scholar 

  10. Datta S, Das M, Balla VK, Bodhak S, Murugesan VK (2018) Mechanical, wear, corrosion and biological properties of arc deposited titanium nitride coatings. Surf Coat Technol 344:214–222. https://doi.org/10.1016/j.surfcoat.2018.03.019

    Article  CAS  Google Scholar 

  11. Floroian L, Craciun D, Socol G, Dorcioman G, Socol M, Badea M, Craciun V (2017) Titanium implants’ surface functionalization by pulsed laser deposition of TiN, ZrC and ZrN hard films. Appl Surf Sci 417:175–182. https://doi.org/10.1016/j.apsusc.2017.03.068

    Article  CAS  Google Scholar 

  12. Ramoul C, Beliardouh NE, Bahi R, Nouveau C, Djahoudi A, Walock MJ (2018) Surface performances of PVD ZrN coatings in biological environments. Tribol-Mater, Surf Interfaces 13(1):12–19. https://doi.org/10.1080/17515831.2018.1553820

    Article  CAS  Google Scholar 

  13. Ban M, Li KD, Tao QS, Fan A, Tang B, Zhang JQ (2021) Microstructure and properties of ZrO2 alloyed layer on Ti-6Al-4V. Int J Electrochem Sci 16(5):210562. https://doi.org/10.20964/2021.05.32

    Article  CAS  Google Scholar 

  14. Cubillos GI, Olaya JJ, Clavijio D, Alfonso JE, Cardozo C (2013) Synthesis and biological characterization of zirconium oxynitride thin film growth by radio-frequency sputtering. Thin Solid Films 529:342–346. https://doi.org/10.1016/j.tsf.2012.06.018

    Article  CAS  Google Scholar 

  15. Hubler R, Cozza A, Marcondes TL, Souza RB, Fiori FF (2001) Wear and corrosion protection of 316-L femoral implants by deposition of thin films. Surf Coat Technol 142:1078–1083. https://doi.org/10.1016/S0257-8972(01)013

    Article  Google Scholar 

  16. Cubillos GI, Romero E, Alfonso JE (2016) Influence of corrosion on the morphology and structure of ZrOxNy-ZrN coatings deposited on stainless steel. Mater Chem Phys 176:167–178. https://doi.org/10.1016/j.matchemphys.2016.04.011

    Article  CAS  Google Scholar 

  17. Carvalhoa P, Borges J, Rodriguesa MS et al (2015) Optical properties of zirconium oxynitride films: the effect of composition, electronic and crystalline structures. Appl Surf Sci 358:660–669. https://doi.org/10.1016/j.apsusc.2015.09.129

    Article  CAS  Google Scholar 

  18. Ferreira SC, Ariza E, Rocha LA et al (2006) Tribocorrosion behaviour of ZrOxNy thin films for decorative applications. Surf Coat Technol 200(22–23):6634–6639. https://doi.org/10.1016/j.surfcoat.2005.11.083

    Article  CAS  Google Scholar 

  19. Carvalho P, Cunha L, Alves E, Martin N, Le Bourhis E, Vaz F (2009) ZrOxNy decorative thin films prepared by the reactive gas pulsing process. J Phys D: Appl Phys 42(19):195501. https://doi.org/10.1088/0022-3727/42/19/195501

    Article  CAS  Google Scholar 

  20. Vaz F, Cerqueira P, Rebouta L et al (2004) Structural, optical and mechanical properties of coloured TiNxOy thin films. Thin Solid Films 447–448:449–454. https://doi.org/10.1016/S0040-6090(03)01123-4

    Article  CAS  Google Scholar 

  21. Huang JH, Lin TC, Yu GP (2011) Phase transition and mechanical properties of ZrNxOy thin films on AISI 304 stainless steel. Surf Coat Technol 206:107–116. https://doi.org/10.1016/j.surfcoat.2011.06.051

    Article  CAS  Google Scholar 

  22. Alberta LA, Fortouna Y, Vishnu J, Pilz S, Gebert A, Lekka C, Nielsch K, Calin M (2023) Effects of Ga on the structural, mechanical and electronic properties of beta-Ti-45Nb alloy by experiments and ab initio calculations. J Mech Behav Biomed Mater 140:105728. https://doi.org/10.1016/j.jmbbm.2023.105728

    Article  CAS  PubMed  Google Scholar 

  23. Xu WJ, Liao MD, Liu XH, Ji L, Ju PF, Li HX, Zhou HD, Chen JM (2021) Microstructures and properties of (TiCrZrVAl)N high entropy ceramics films by multi-arc ion plating. Ceram Int 47:24751–24759. https://doi.org/10.1016/j.ceramint.2021.05.198

    Article  CAS  Google Scholar 

  24. Liu YL, Huang JH, Kai JJ, Chen FR (2009) Microstructure study of a nanocrystalline two-phase ZrNxOy thin film. Mater Chem Phys 116(2–3):503–506. https://doi.org/10.1016/j.matchemphys.2009.04.034

    Article  CAS  Google Scholar 

  25. Vaz F, Carvalho P, Cunha L et al (2004) Property change in ZrNxOy thin films: effect of the oxygen fraction and bias voltage. Thin Solid Films 469–470:11–17. https://doi.org/10.1016/j.tsf.2004.06.191

    Article  CAS  Google Scholar 

  26. Mandrino D, Podgornik B (2017) XPS investigations of tribofilms formed on CrN coatings. Appl Surf Sci 396:554–559. https://doi.org/10.1016/j.apsusc.2016.10.194

    Article  CAS  Google Scholar 

  27. Zang K, He X, Liang W et al (2023) The mechanical properties and wear resistance of Hf-Ta-N coatings prepared by double glow plasma alloying technology. Ceram Int 49(6):9956–9966. https://doi.org/10.1016/j.ceramint.2022.11.173

    Article  CAS  Google Scholar 

  28. Uddin GM, Jawad M, Ghufran M et al (2019) Experimental investigation of tribo-mechanical and chemical properties of TiN PVD coating on titanium substrate for biomedical implants manufacturing. Int J Adv Manfu Tech 102(5–8):1391–1404. https://doi.org/10.1007/s00170-018-03244-2

    Article  Google Scholar 

  29. Fu Y, Zhou F, Wang Q, Zhang M, Zhou Z (2020) Electrochemical and tribocorrosion performances of CrMoSiCN coating on Ti-6A-4V titanium alloy in artificial seawater. Corros Sci 165:108385. https://doi.org/10.1016/j.corsci.2019.108385

    Article  CAS  Google Scholar 

  30. Durdu S, Usta M, Berkem AS (2016) Bioactive coatings on Ti6Al4V alloy formed by plasma electrolytic oxidation. Surf Coat Technol 301:85–93. https://doi.org/10.1016/j.surfcoat.2015.07.053

    Article  CAS  Google Scholar 

  31. Yerokhin AL, Nie X, Leyland A, Matthews A (2000) Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy. Surf Coat Technol 130:195–206. https://doi.org/10.1016/s0257-8972(00)00719-2

    Article  CAS  Google Scholar 

  32. Castro JD, Evaristo M, Carvalho S (2023) Mechanical and anti-corrosion behaviour of ZrNxOy films deposited by reactive high-power impulse magnetron sputtering for maritime applications. Surf Coat Technol 473:129991. https://doi.org/10.1016/j.surfcoat.2023.129991

    Article  CAS  Google Scholar 

  33. Ponthiaux P, Wenger F, Drees D, Celis JP (2004) Electrochemical techniques for studying tribocorrosion processes. Wear 256(5):459–468. https://doi.org/10.1016/S0043-1648(03)00556-8

    Article  CAS  Google Scholar 

  34. Buciumeanu M, Bagheri A, Souza JCM, Silva FS, Henriques B (2016) Tribocorrosion behavior of hot pressed CoCrMo alloys in artificial saliva. Tribol Int 97:423–430. https://doi.org/10.1016/j.triboint.2016.02.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Nantong Basic Science Research Program (No. JC12022056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingze Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The experiment in this paper does not involve human tissue.

Additional information

Handling Editor: Zhao Shen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, B., Yang, K., Tian, T. et al. Mechanical, tribological, corrosion and tribocorrosion properties of ZrNxOy coatings on Ti–45Nb alloys by multi-arc ion plating. J Mater Sci 59, 7060–7074 (2024). https://doi.org/10.1007/s10853-024-09575-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09575-8

Navigation