Skip to main content

Advertisement

Log in

Microstructure and thermoelectric properties of Bi0.5Na0.02Sb1.48−x In x Te3 alloys fabricated by vacuum melting and hot pressing

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The Bi0.5Na0.02Sb1.48−x In x Te3 alloys (x = 0.02–0.20) were synthesized by vacuum melting and hot pressing methods at 753 K, 60 MPa for 30 min. Effects of Na and In dual partial substitutions for Sb on the thermoelectric properties were investigated from 300 to 500 K. Substituting Sb with Na and In can enhance the Seebeck coefficient effectively near room temperature. The electrical resistivity of the Na and In dual-doping samples is higher within the whole test temperature range. The Bi0.5Na0.02Sb1.48−x In x Te3 samples (x = 0.02, 0.06) play a great role in optimizing the thermal conductivity. As for the Bi0.5 Na0.02Sb1.46In0.02Te3 alloy, the minimum value of thermal conductivity reaches 0.53 W·m−1·K−1 at 320 K. The thermoelectric performance of the Na and In dual-doped samples is greatly improved, and a figure of merit ZT of 1.26 is achieved at 300 K for the Bi0.5Na0.02Sb1.42In0.06Te3, representing 26 % enhancement with respect to ZT = 1.0 of the undoped sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tritt TM. Holey and unholey semiconductors. Science. 1999;283(5403):804.

    Article  Google Scholar 

  2. DiSalvo FJ. Thermoelectric cooling and power generation. Science. 1999;285(5428):703.

    Article  Google Scholar 

  3. Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 2008;321(5895):1457.

    Article  Google Scholar 

  4. Dresselhaus MS, Chen G, Tang MY, Yang RG, Lee H, Wang DZ. New directions for low-dimensional thermoelectric materials. Adv Mater. 2007;19(8):1043.

    Article  Google Scholar 

  5. Poudel B, Hao Q. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science. 2008;320(5876):634.

    Article  Google Scholar 

  6. Cao YQ, Zhao XB, Zhu TJ, Zhang XB, Tu JP. Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure. Appl Phys Lett. 2008;92(1):143106.

    Article  Google Scholar 

  7. Li YL, Jiang J, Xu GJ, Li W, Zhou LM, Li Y, Cui P. Synthesis of micro/nanostructured p-type Bi0.4Sb1.6Te3 and its thermoelectric properties. J Alloys Compd. 2009;480(2):954.

    Article  Google Scholar 

  8. Xie WJ, Tang XF, Yan YG, Zhang QJ, Tritt TM. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Appl Phys Lett. 2009;94(2):102111.

    Article  Google Scholar 

  9. Kim DH, Kim C, Heo SH, Kim HY. Influence of powder morphology on thermoelectric anisotropy of spark-plasma-sintered Bi–Te-based thermoelectric materials. Acta Mater. 2011;59(1):405.

    Article  Google Scholar 

  10. Delaizir G, Bernard-Granger G, Monnier J, Grodzki R, Kim-Hak O, Szkutnik P, Soulier M, Saunier S, Goeuriot D, Rouleau O, Simon J, Godart C, Navone C. A comparative study of spark plasma sintering (SPS), hot isostatic pressing (HIP) and microwaves sintering techniques on p-type Bi2Te3 thermoelectric properties. Mater Res Bull. 2012;47(8):1954.

    Article  Google Scholar 

  11. Liu CJ, Lai HC, Liu YL, Liu LR. High thermoelectric figure-of-merit in p-type nanostructured (Bi, Sb)2Te3 fabricated via hydrothermal synthesis and evacuated-and-encapsulated sintering. J Mater Chem. 2012;22(11):4825.

    Article  Google Scholar 

  12. Yu FR, Xu B, Zhang JJ, Yu DL, He JL, Liu ZY. Structural and thermoelectric characterizations of high pressure sintered nanocrystalline Bi2Te3 bulks. Mater Res Bull. 2012;47(6):1432.

    Article  Google Scholar 

  13. André C, Vasilevskiy D, Turenne S, Masut RA. Increase in the density of states in n-type extruded (Bi(1−x)Sb x )2(Te(1−y)Se y )3 thermoelectric alloys. J Phys D. 2011;44(23):235401.

    Article  Google Scholar 

  14. Ajay SN, Zhao YY, Yu LG, Aik Michael KK, Dresselhaus MS, Xiong QH. Enhanced thermoelectric properties of solution grown Bi2Te3−x Se x nanoplatelet composites. Nano Lett. 2012;12(3):1203.

    Article  Google Scholar 

  15. Kim MY, Yeo YH, Park DH, Oh TS. Thermoelectric characteristics of the (Bi, Sb)2(Te, Se)3 nanocomposites processed with nanoparticle dispersion. Ceramics Int. 2012;38(S1):S529.

    Article  Google Scholar 

  16. Zhu YG, Shen HL, Chen HL. Effects of nano-TiO2 dispersion on thermoelectric properties of Co4Sb11.7Te0.3 composites. Rare Met. 2012;31(1):43.

    Article  Google Scholar 

  17. Gothard N, Ji X, He J, Tritt TM. Thermoelectric and transport properties of n-type Bi2Te3 nanocomposites. J Appl Phys. 2008;103(5):054314.

    Article  Google Scholar 

  18. Chen C, Zhang BP, Liu DW, Ge ZH. Thermoelectric properties of Cu y Bi x Sb2−xy Te3 alloys fabricated by mechanical alloying and spark plasma sintering. Intermetallics. 2012;25(6):131.

    Article  Google Scholar 

  19. Ceyda Yelgel Ö, Srivastava GP. Thermoelectric properties of n-type Bi2(Te0.85Se0.15)3 single crystals doped with CuBr and SbI3. Phys Rev B. 2012;85(12):125207.

    Article  Google Scholar 

  20. Soliman LI, Nassary MM, Shaban HT, Salwa AS. Influence of Se on the electron mobility in thermal evaporated Bi2(Te1−x Se x )3 thin films. Vacuum. 2010;85(3):358.

    Article  Google Scholar 

  21. Cui JL, Xue HF, Xiu WJ, Mao LD, Ying PZ, Jiang L. Crystal structure analysis and thermoelectric properties of p-type pseudo-binary (Al2Te3) x –(Bi0.5Sb1.5Te3)1−x alloys prepared by spark plasma sintering. J Alloys Compd. 2008;460(1–2):426.

    Article  Google Scholar 

  22. Du BL, Li H, Tang XF. Enhanced thermoelectric performance in Na-doped p-type nonstoichiometric AgSbTe2 compound. J Alloys Compd. 2011;509(5):2039.

    Article  Google Scholar 

  23. Chung DY, Lordanidis L, Choi KS, Kanatzidis MG. Complex chalcogenides as thermoelectric materials: a solid state chemistry approach. Bull Korean Chem. 1998;19(12):1283.

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51161009) and the Research Project of Jiangxi Provincial Education Department (No. GJJ13722 and GJJ11615).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Kai Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, XK., Hu, KG., Ma, DH. et al. Microstructure and thermoelectric properties of Bi0.5Na0.02Sb1.48−x In x Te3 alloys fabricated by vacuum melting and hot pressing. Rare Met. 34, 770–775 (2015). https://doi.org/10.1007/s12598-013-0124-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0124-z

Keywords

Navigation