Skip to main content
Log in

Thermoelectric Properties of Bi2Te3−y Se y :I m Prepared by Mechanical Alloying and Hot Pressing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Bi2Te3−y Se y :I m (y = 0.15–0.6 and m = 0.0025–0.01) solid solutions were prepared by mechanical alloying and hot pressing. The lattice constants that were measured from x-ray diffraction patterns decreased linearly with increasing Se content, but they were not changed remarkably by I doping. The average relative densities of the hot-pressed specimens are higher than 97%. All of the specimens exhibited n-type conductions in the measured temperature range from 323 K to 523 K, and their electrical conductivity decreased slightly with increasing temperature, indicating degenerate semiconductor behaviors. The electrical conductivity decreased with increasing Se content, whereas it was increased by I doping, and this is in contrast with the Seebeck coefficient; this resulted from the changes of the electron concentrations due to the Se substitution and the I doping. The thermal conductivity decreased with increasing Se content, and this is the result of both the decreased electronic thermal conductivity due to the decreased carrier concentration and the decreased lattice thermal conductivity due to the increased alloy scattering. The maximum dimensionless figure of merit for Bi2Te2.4Se0.6, ZT max = 0.84 at 473 K, is due to its low thermal conductivity and high Seebeck coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kim, S. Cho, N. Kim, and J. Park, IEICE Electron. Exp. 7, 1539 (2010).

    Article  Google Scholar 

  2. S. Wang, G. Tan, W. Xie, G. Zheng, H. Li, J. Yang, and X. Tang, J. Mater. Chem. 22, 20943 (2012).

    Article  Google Scholar 

  3. J.R. Drabble and C.H.L. Goodman, J. Phys. Chem. Solids 5, 142 (1958).

    Article  Google Scholar 

  4. L.V. Prokof’eva, D.A. Pshenai-Severin, P.P. Konstan-Tinov, and A.A. Shabaldin, Semiconductors 43, 1155 (2009).

    Article  Google Scholar 

  5. D. Vasilevskiy, A. Sami, J.M. Simard, and R. Masut, J. Appl. Phys. 92, 2610 (2002).

    Article  Google Scholar 

  6. S. Cho, Y. Kim, A. DiVenere, G.K. Wong, J.B. Ketterson, and J.R. Meyer, Appl. Phys. Lett. 75, 1401 (1999).

    Article  Google Scholar 

  7. S. Wang, W. Xie, H. Li, and X. Tang, Intermetallics 19, 1024 (2011).

    Article  Google Scholar 

  8. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  9. J. Seo, C. Lee, and K. Park, J. Mater. Sci. 35, 1549 (2000).

    Article  Google Scholar 

  10. M.Z. Tahar, S.A. Nemov, D.I. Popov, and T.E. Svechnikovad, J. Phys: Conf. Ser. 150, 022082 (2009).

    Google Scholar 

  11. H.P. Ha, Y.J. Oh, D.B. Hyun, and E.P. Yoon, Intl. J. Soc. Mater. Eng. Resour. 10, 130 (2002).

    Article  Google Scholar 

  12. L. Hu, H. Wu, T. Zhu, C. Fu, J. He, P. Ying, and X. Zhao, Adv. Energy Mater. 5, 1500411 (2015).

    Article  Google Scholar 

  13. L. Hu, T. Zhu, X. Liu, and X. Zhao, Adv. Funct. Mater. 24, 5211 (2014).

    Article  Google Scholar 

  14. J. Seo, C. Lee, and K. Park, Mater. Sci. Eng. 54, 135 (1998).

    Article  Google Scholar 

  15. G.E. Lee, I.H. Kim, Y.S. Lim, W.S. Seo, B.J. Choi, and C.W. Hwang, J. Electron. Mater. 43, 1650 (2014).

    Article  Google Scholar 

  16. A.Y. Eum, I.H. Kim, S.M. Choi, S. Lee, W.S. Seo, J.S. Park, and S.H. Yang, J. Korean Phys. Soc. 67, 1809 (2015).

    Article  Google Scholar 

  17. H. Scherrer and S. Scherrer, Thermoelectrics Handbook, chap. 27, ed. D.M. Rowe (New York: CRC Press, 2006)

    Google Scholar 

  18. T.S. Oh, D.B. Hyun, and N.V. Kolomoets, Scr. Mater. 42, 849 (2000).

    Article  Google Scholar 

  19. L.V. Prokofieva, D.A. Pshenay-Severin, P.P. Konstantinov, and A.A. Shabaldin, Semicond. 43, 973 (2009).

    Article  Google Scholar 

  20. J. Jiang, L. Chen, S. Bai, and Q. Wang, Scr. Mater. 52, 347 (2005).

    Article  Google Scholar 

  21. K. Uemura and I. Nishida, Thermoelectric Semiconductor and Their Application (Tokyo: Nikkan-Kogyo Shinbun Press, 1988), p. 150.

    Google Scholar 

  22. S. Wang, H. Li, R. Lu, G. Zheng, and X. Tang, Nanotechnology 24, 285702 (2013).

    Article  Google Scholar 

  23. H. Cailat, A. Borshchevsky, and J.P. Fleurial, J. Appl. Phys. 80, 4442 (1996).

    Article  Google Scholar 

  24. T.J. Zhu, Z.J. Xu, J. He, J.J. Shen, S. Zhu, L.P. Hu, T.M. Tritt, and X.B. Zhao, J. Mater. Chem. A 1, 11589 (2013).

    Article  Google Scholar 

  25. G.E. Lee, I.H. Kim, S.M. Choi, Y.S. Lim, W.S. Seo, J.S. Park, and S.H. Yang, J. Korean Phys. Soc. 65, 1908 (2014).

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by the Fundamental Research and Development Program for Core Technology of Materials funded by the Ministry of Trade, Industry and Energy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eum, AY., Choi, SM., Lee, S. et al. Thermoelectric Properties of Bi2Te3−y Se y :I m Prepared by Mechanical Alloying and Hot Pressing. J. Electron. Mater. 46, 2623–2628 (2017). https://doi.org/10.1007/s11664-016-4828-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4828-3

Keywords

Navigation