Skip to main content
Log in

Absorption enhancement of graphene Salisbury screen in the mid-infrared regime

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

As an emerging optoelectronic material, graphene has exhibited negligible absorption in the mid-infrared due to its Drude-like behavior of free electrons. For this reason, existing graphene-based Salisbury screens with enhanced graphene absorption have been limited to terahertz frequencies, and are experiencing difficulty to extend to higher frequency region. We propose to utilize graphene interband conductivity instead of the commonly used intraband conductivity to realize graphene-based Salisbury screens in the mid-infrared. Distinct mid-infrared absorption features in graphene-based Salisbury screens are investigated numerically and analytically by means of transfer matrix method. In contrast to terahertz absorption arising from intraband transition, the enhanced absorption of graphene in the mid-infrared is dominated by the interband transition. For a single layer of graphene on top of a metallic plane, peak absorptions of 10 % are obtained at normal incidence, and nearly perfect absorptions close to 1 are achieved at near grazing angle for incident s-polarization. To further enhance the perfect absorption over wider incident angles, a graphene-dielectric multilayer stack is proposed and analyzed. These results are relevant to graphene optoelectronics for mid-infrared applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  ADS  Google Scholar 

  2. K.F. Mak, L. Ju, F. Wang, T.F. Heinz, Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun. 152, 1341–1349 (2012)

    Article  ADS  Google Scholar 

  3. T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297–301 (2010)

    Article  Google Scholar 

  4. L. Vicarelli, M.S. Vitiello, D. Coquillat, A. Lombardo, A.C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11, 865–871 (2012)

    Article  ADS  Google Scholar 

  5. X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T.F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7, 883–887 (2013)

    Article  ADS  Google Scholar 

  6. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, A graphene-based broadband optical modulator. Nature 474, 64–67 (2011)

    Article  ADS  Google Scholar 

  7. W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, Y.R. Shen, Ultrafast all-optical graphene modulator. Nano Lett. 14, 955–959 (2014)

    Article  ADS  Google Scholar 

  8. S. Thongrattanasiri, F.H.L. Koppens, F.J.G. de Abajo, Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401 (2012)

    Article  ADS  Google Scholar 

  9. R. Alaee, M. Farhat, C. Rockstuhl, F. Lederer, A perfect absorber made of a graphene micro-ribbon metamaterial. Opt. Express 20, 28017–28024 (2012)

    Article  ADS  Google Scholar 

  10. V. Ryzhii, A.A. Dubinov, T. Otsuji, V. Mitin, M.S. Shur, Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides. J. Appl. Phys. 107, 054505 (2010)

    Article  ADS  Google Scholar 

  11. W.-T. Liu, S.W. Wu, P.J. Schuck, M. Salmeron, Y.R. Shen, F. Wang, Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation. Phys. Rev. B 82, 081408 (2010)

    Article  ADS  Google Scholar 

  12. N.M.R. Peres, F. Guinea, A.H. Castro Neto, Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73, 125411 (2006)

    Article  ADS  Google Scholar 

  13. L.A. Falkovsky, S.S. Pershoguba, Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B 76, 153410 (2007)

    Article  ADS  Google Scholar 

  14. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  ADS  Google Scholar 

  15. K.F. Mak, M.Y. Sfeir, Y. Wu, C.H. Lui, J.A. Misewich, T.F. Heinz, Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008)

    Article  ADS  Google Scholar 

  16. J.M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M.G. Spencer, D. Veksler, Y. Chen, Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl. Phys. Lett. 93, 131905 (2008)

    Article  ADS  Google Scholar 

  17. C. Lee, J.Y. Kim, S. Bae, K.S. Kim, B.H. Hong, E.J. Choi, Optical response of large scale single layer graphene. Appl. Phys. Lett. 98, 071905 (2011)

    Article  ADS  Google Scholar 

  18. T. Low, P. Avouris, Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8, 1086–1101 (2014)

    Article  Google Scholar 

  19. F.H.L. Koppens, D.E. Chang, F.J.G. de Abajo, Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett. 11, 3370–3377 (2011)

    Article  Google Scholar 

  20. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011)

    Article  ADS  Google Scholar 

  21. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, F. Xia, Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotechnol. 7, 330–334 (2012)

    Article  ADS  Google Scholar 

  22. A. Nikitin, F. Guinea, F. Garcia-Vidal, L. Martin-Moreno, Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons. Phys. Rev. B 85, 081405 (2012)

    Article  ADS  Google Scholar 

  23. J. Zhang, C. Guo, K. Liu, Z. Zhu, W. Ye, X. Yuan, S. Qin, Coherent perfect absorption and transparency in a nanostructured graphene film. Opt. Express 22, 12524–12532 (2014)

    Article  ADS  Google Scholar 

  24. Z. Fang, Y. Wang, A.E. Schlather, Z. Liu, P.M. Ajayan, F.J.G. de Abajo, P. Nordlander, X. Zhu, N.J. Halas, Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett. 14, 299–304 (2014)

    Article  Google Scholar 

  25. M. Amin, M. Farhat, H. Bağcı, An ultra-broadband multilayered graphene absorber. Opt. Express 21, 29938–29948 (2013)

    Article  ADS  Google Scholar 

  26. A. Andryieuski, A.V. Lavrinenko, Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. Opt. Express 21, 9144–9155 (2013)

    Article  ADS  Google Scholar 

  27. M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Wang, C. Huang, C. Hu, X. Luo, Strong enhancement of light absorption and highly directive thermal emission in graphene. Opt. Express 21, 11618–11627 (2013)

    Article  ADS  Google Scholar 

  28. B.Z. Xu, C.Q. Gu, Z. Li, Z.Y. Niu, A novel structure for tunable terahertz absorber based on graphene. Opt. Express 21, 23803–23811 (2013)

    Article  ADS  Google Scholar 

  29. J.M. Woo, M.-S. Kim, H.W. Kim, J.-H. Jang, Graphene based salisbury screen for terahertz absorber. Appl. Phys. Lett. 104, 081106 (2014)

    Article  ADS  Google Scholar 

  30. Z. Li, N. Yu, Modulation of mid-infrared light using graphene-metal plasmonic antennas. Appl. Phys. Lett. 102, 131108 (2013)

    Article  ADS  Google Scholar 

  31. T. Zhan, X. Shi, Y. Dai, X. Liu, J. Zi, Transfer matrix method for optics in graphene layers. J. Phys. Condens. Matter 25, 215301 (2013)

    Article  ADS  Google Scholar 

  32. G.W. Hanson, Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008)

    Article  ADS  Google Scholar 

  33. B. Zhu, G. Ren, S. Zheng, Z. Lin, S. Jian, Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices. Opt. Express 21, 17089–17096 (2013)

    Article  ADS  Google Scholar 

  34. M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R.W. Alexander Jr., C.A. Ward, Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Opt. 22, 1099–1119 (1983)

    Article  ADS  Google Scholar 

  35. F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schӧnenberger, J.W. Choi, H.G. Park, M. Beck, J. Faist, Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial. Nano Lett. 13, 3193–3198 (2013)

    Article  ADS  Google Scholar 

  36. M.A.K. Othman, C. Guclu, F. Capolino, Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. Opt. Express 21, 7614–7632 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is partially supported by startup funding from University of Electronic Science and Technology of China (grant No. 2013-QR-14), the Chinese National 1000 Plan for Young Talents, and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 61421002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, X., Pu, Y., Li, Z. et al. Absorption enhancement of graphene Salisbury screen in the mid-infrared regime. J Opt 44, 59–67 (2015). https://doi.org/10.1007/s12596-014-0230-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-014-0230-9

Keywords

Navigation