Skip to main content

Advertisement

Log in

Delayed Model for HIV Infection with Drug Effects

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

Delayed models are a better representation of the nature of HIV. In the present paper, a multi-delayed model of HIV with combination drug therapy has been analysed. Effect of the immune response in the form of effector cell response has also been included to make the model more justified. The threshold properties related with the basic reproduction number \(R_0\) have been discussed. The local and global properties of the model have been analysed. Extensive numerical simulations have been performed to show the impact of highly effective drug on the concentration of virus. The numerical simulations and the result proved has led to the conclusion that a highly effective drug when combined with a less effective drug, can very efficiently bring down the viral load to undetectable levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Allen, L.J., Brauer, F., Van den Driessche, P., Wu, J.: Mathematical Epidemiology. Springer, Berlin (2008)

    Google Scholar 

  2. Balasubramaniam, P., Tamilalagan, P., Prakash, M.: Bifurcation analysis of HIV infection model with antibody and cytotoxic T-lymphocyte immune responses and Beddington–DeAngelis functional response. Math. Methods Appl. Sci. 38(7), 1330–1341 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banks, H., Bortz, D.: A parameter sensitivity methodology in the context of HIV delay equation models. J. Math. Biol. 50(6), 607–625 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Banks, H., Bortz, D., Holte, S.: Incorporation of variability into the modeling of viral delays in HIV infection dynamics. Math. Biosci. 183(1), 63 – 91 (2003). doi:10.1016/S0025-5564(02)00218-3. http://www.sciencedirect.com/science/article/pii/S0025556402002183

  5. Burg, D., Rong, L., Neumann, A.U., Dahari, H.: Mathematical modeling of viral kinetics under immune control during primary HIV-1 infection. J. Theor. Biol. 259(4), 751–759 (2009)

    Article  MathSciNet  Google Scholar 

  6. Castillo-Chávez, C., Feng, Z., Huang, W.: On the computation of \(r_0\) and its role on global stability. Math. Approaches Emerg. Reemerg. Infect. Dis. Introd. 1, 229 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciupe, M., Bivort, B., Bortz, D., Nelson, P.: Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models. Math. Biosci. 200(1), 1–27 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Conway, J.M., Perelson, A.S.: Post-treatment control of HIV infection. Proc. Natl. Acad. Sci. 112(17), 5467–5472 (2015)

    Article  Google Scholar 

  9. Culshaw, R.V., Ruan, S.: A delay-differential equation model of HIV infection of CD4+ T-cells. Math. Biosci. 165(1), 27–39 (2000)

    Article  MATH  Google Scholar 

  10. Dixit, N.M., Markowitz, M., Ho, D.D., Perelson, A.S.: Estimates of intracellular delay and average drug efficacy from viral load data of HIV-infected individuals under antiretroviral therapy. Antivir. Ther 9, 237–246 (2004)

    Google Scholar 

  11. Dixit, N.M., Perelson, A.S.: Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay. J. Theor. Biol. 226(1), 95–109 (2004)

    Article  MathSciNet  Google Scholar 

  12. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1), 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hale, J.K.: Functional Differential Equations. Springer, New York (1971)

    Book  MATH  Google Scholar 

  14. Herz, A., Bonhoeffer, S., Anderson, R.M., May, R.M., Nowak, M.A.: Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay. Proc. Natl. Acad. Sci. 93(14), 7247–7251 (1996)

    Article  Google Scholar 

  15. Hethcote, H.W.: The basic epidemiology models: models, expressions for Ro, parameter estimation, and applications. Math. Underst. Infect. Dis Dyn. 16, 1–61 (2009)

    Google Scholar 

  16. Jones, J.H.: Notes on r0. Department of Anthropological Sciences Stanford University (2007)

  17. Ke, R., Lewin, S.R., Elliott, J.H., Perelson, A.S.: Modeling the effects of vorinostat in vivo reveals both transient and delayed HIV transcriptional activation and minimal killing of latently infected cells. PLoS Pathog 11(10), e1005,237 (2015)

    Article  Google Scholar 

  18. Li, X., Wei, J.: On the zeros of a fourth degree exponential polynomial with applications to a neural network model with delays. Chaos Solitons Fractals 26(2), 519–526 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Luo, S., Perelson, A.S.: The challenges of modelling antibody repertoire dynamics in HIV infection. Philos. Trans. R. Soc. B 370(1676), 20140,247 (2015)

    Article  Google Scholar 

  20. Nelson, P.W., Murray, J.D., Perelson, A.S.: A model of HIV-1 pathogenesis that includes an intracellular delay. Math. Biosci. 163(2), 201–215 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ouifki, R., Witten, G.: Stability analysis of a model for HIV infection with rti and three intracellular delays. BioSystems 95(1), 1–6 (2009)

    Article  Google Scholar 

  22. Pawelek, K.A., Liu, S., Pahlevani, F., Rong, L.: A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data. Math. Biosci. 235(1), 98–109 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Perelson, A.S.: Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2(1), 28–36 (2002)

    Article  Google Scholar 

  24. Perelson, A.S., Essunger, P., Cao, Y., Vesanen, M., Hurley, A., Saksela, K., Markowitz, M., Ho, D.D.: Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387, 188–191 (1997)

    Article  Google Scholar 

  25. Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41(1), 3–44 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271(5255), 1582–1586 (1996)

    Article  Google Scholar 

  27. Perelson, A.S., Ribeiro, R.M.: Modeling the within-host dynamics of HIV infection. BMC Biol. 11(1), 96 (2013)

    Article  Google Scholar 

  28. Pitchaimani, M., Monica, C.: Global stability analysis of HIV-1 infection model with three time delays. J. Appl. Math. Comput. 48(1), 293–319 (2015)

  29. Pitchaimani, M., Monica, C., Divya, M.: Stability analysis for HIV infection delay model with protease inhibitor. Biosystems 114(2), 118–124 (2013)

    Article  Google Scholar 

  30. Rong, L., Feng, Z., Perelson, A.S.: Emergence of HIV-1 drug resistance during antiretroviral treatment. Bull. Math. Biol. 69(6), 2027–2060 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rong, L., Perelson, A.S.: Modeling latently infected cell activation: viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy. PLoS Comput. Biol. 5(10), e1000,533 (2009)

    Article  MathSciNet  Google Scholar 

  32. Shu, H., Wang, L., Watmough, J.: Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses. SIAM J. Appl. Math. 73(3), 1280–1302 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sierra, S., Kupfer, B., Kaiser, R.: Basics of the virology of HIV-1 and its replication. J. Clin. Virol. 34(4), 233–244 (2005)

    Article  Google Scholar 

  34. Smith, H.L., De Leenheer, P.: Virus dynamics: a global analysis. SIAM J. Appl. Math. 63(4), 1313–1327 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Song, X., Zhou, X., Zhao, X.: Properties of stability and Hopf bifurcation for a HIV infection model with time delay. Appl. Math. Model. 34(6), 1511–1523 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tarfulea, N.: A mathematical model for HIV treatment with time-varying antiretroviral therapy. Int. J. Comput. Math. 88(15), 3217–3235 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, K., Wang, W., Pang, H., Liu, X.: Complex dynamic behavior in a viral model with delayed immune response. Physica D Nonlinear Phenom. 226(2), 197–208 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, Y., Brauer, F., Wu, J., Heffernan, J.M.: A delay-dependent model with HIV drug resistance during therapy. J. Math. Anal. Appl. 414(2), 514–531 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, Y., Zhou, Y., Brauer, F., Heffernan, J.M.: Viral dynamics model with CTL immune response incorporating antiretroviral therapy. J. Math. Biol. 67(4), 901–934 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, Z., Xu, R.: Stability and Hopf bifurcation in a viral infection model with nonlinear incidence rate and delayed immune response. Commun. Nonlinear Sci. Numer. Simul. 17(2), 964–978 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. White, D.O., Fenner, F., et al.: Medical Virology, 3rd edn. Academic Press, Inc., Orlando, Florida (1986)

    Google Scholar 

  42. Wodarz, D., Lloyd, A.L.: Immune responses and the emergence of drug-resistant virus strains in vivo. Proc. R. Soc. Lond. B 271(1544), 1101–1110 (2004)

    Article  Google Scholar 

  43. Xiang, H., Feng, L.X., Huo, H.F.: Stability of the virus dynamics model with Beddington–DeAngelis functional response and delays. Appl. Math. Model. 37(7), 5414–5423 (2013)

    Article  MathSciNet  Google Scholar 

  44. Xu, R.: Global stability of an HIV-1 infection model with saturation infection and intracellular delay. J. Math. Anal. Appl. 375(1), 75–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhu, H., Zou, X.: Impact of delays in cell infection and virus production on HIV-1 dynamics. Math. Med. Biol. 25(2), 99–112 (2008)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Author (Saroj Kumar Sahani) is grateful to South Asian University for providing full financial support to participate and present the article in 6th International Conference on Optimization and Control with Applications held at Changsha University of Science and Technology, China during 11th–14th December, 2015. Authors are also grateful to the anonymous reviewers for critical comments and suggestions on the paper which has greatly improved its quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saroj Kumar Sahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahani, S.K., Yashi Delayed Model for HIV Infection with Drug Effects. Differ Equ Dyn Syst 26, 57–80 (2018). https://doi.org/10.1007/s12591-016-0341-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-016-0341-7

Keywords

Mathematics Subject Classification

Navigation