Skip to main content
Log in

Periodic Solutions of a Nonautonomous Leslie-Gower Predator-Prey Model with Non-Linear Type Prey Harvesting on Time Scales

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we investigate the existence of periodic solutions of modified version of the Leslie-Gower predator-prey model with Holling-type II functional response in the presence of Michaelis-Menten type prey harvesting over a time scale. Sufficient conditions for the existence of periodic solutions are derived by using the continuation theorem of coincidence degree theory. The condition we obtain is easily verifiable and not much restricted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbas, S., Banerjee, M., Hungerbuhler, N.: Existence, uniqueness and stability analysis of allelopathic stimulatory phytoplankton model. J. Math. Anal. Appl. 367, 249–259 (2010)

    Article  MathSciNet  Google Scholar 

  2. Fu, S., Zhang, L., Hu, P.: Global behavior of solutions in a Lotka Volterra predator prey model with prey-stage structure. Nonlinear Anal. RWA. 14, 2027–2045 (2013)

    Article  MathSciNet  Google Scholar 

  3. Tripathi, J.P., Abbas, S., Thakur, M.: A density dependent delayed predator-prey model with Beddington-DeAngelis type function response incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 22, 427–450 (2015)

    Article  MathSciNet  Google Scholar 

  4. Yang, W., Li, X., Bai, Z.: Permanence of periodic Holling type-IV predator-prey system with stage structure for prey. Math. Comp. Model. 48, 677–684 (2008)

    Article  MathSciNet  Google Scholar 

  5. Huo, H.F., Li, W.T.: Periodic solutions of delayed Leslie-Gower predator-prey models. Appl. Math. Comput. 155, 591–605 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Mickens, R.E.: A SIR-model with square-root dynamics: an NSFD scheme. J. Diff. Equ. Appl. 16, 209–216 (2010)

    Article  MathSciNet  Google Scholar 

  7. Jang, S., Elaydi, S.: Difference equations from discretization of a continuous epidemic model with immigration of infectives. Can. Appl. Math. Q. 11, 93–105 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Izzo, G., Muroya, Y., Vecchio, A.: A general discrete time model of population dynamics in the presence of an infection. Disc. Dyn. Nat. Soc, Article ID 143019, p. 15 (2009)

  9. Christiansen, F.B., Fenchel, T.M.: Theories of populations in biological communities. Lecture Notes in Ecological Studies, vol. 20. Springer-Verlag, Berlin (1977)

    Book  Google Scholar 

  10. Zeng, G., Wang, F., Nieto, J.J.: Complexity of a delayed predator-prey model with impulsive harvest and holling type II functional response. Adv. Complex Syst. 11, 77–97 (2008)

    Article  MathSciNet  Google Scholar 

  11. Bell, E.T.: Men of mathematics. Simon & Schuster, New York (1937)

    MATH  Google Scholar 

  12. Hilger, S.: Analysis on measure chains- a unified approach to continuous and discrete calculus. Results Math. 18, 18–56 (1990)

    Article  MathSciNet  Google Scholar 

  13. Bohner, M., Fan, M., Zhang, J.: Existence of periodic solutions in predator prey and competition dynamic systems. Nonlinear Anal. RWA 7, 1193–1204 (2006)

    Article  MathSciNet  Google Scholar 

  14. Tian, Y., Ge, W.: Existence and uniqueness results for nonlinear first-order three-point boundary value problems on time scales. Nonlinear Anal. TMA 69, 2833–2842 (2008)

    Article  MathSciNet  Google Scholar 

  15. Peterson, A.C., Tisdell, C.C.: Boundedness and uniqueness of solutions to dynamic equations on time scales. J. Differ. Equ. Appl. 10, 1295–1306 (2004)

    Article  MathSciNet  Google Scholar 

  16. Atici, F.M., Biles, D.C., Lebedinsky, A.: An application of time scales to economics. Math. Comput. Model. 43, 718–726 (2006)

    Article  MathSciNet  Google Scholar 

  17. DaCunha, J.J.: Stability for time varying linear dynamic systems on time scales. J. Comput. Appl. Math. 176, 381–410 (2005)

    Article  MathSciNet  Google Scholar 

  18. Hamza, A.E., Oraby, K.M.: Stability of abstract dynamic equations on time scales. Adv. Differ. Equ. 2012, 143 (2012)

    Article  MathSciNet  Google Scholar 

  19. Fang, H., Wang, Y.: Four periodic solutions for a food-limited two-species Gilpin-Ayala type predator-prey system with harvesting terms on time scales. Adv. Differ. Equ. 2013, 278 (2013)

    Article  MathSciNet  Google Scholar 

  20. Gaines, R.E., Mawhin, J.L.: Coincidence degree and non-linear differential equations. Springer, Berlin (1977)

    Book  Google Scholar 

  21. Liu, Z.: Double periodic solutions for a ratio-dependent predator-prey system with harvesting terms on time scales. Discrete Dyn. Nat. Soc., Article ID 243974, p. 12 (2009)

  22. Zhu, Y., Wang, K.: Existence and global attractivity of positive periodic solutions for a predator prey model with modified Leslie Gower Holling-type II schemes. J. Math. Anal. Appl. 384, 400–408 (2011)

    Article  MathSciNet  Google Scholar 

  23. Dai, G., Tang, M.: Coexistence region and global dynamics of a harvested predator prey system. SIAM J. Appl. Math. 58, 193–210 (1998)

    Article  MathSciNet  Google Scholar 

  24. Das, T., Mukherjee, R.N., Chaudhari, K.S.: Bioeconomic harvesting of a prey predator fishery. J. Biol. Dyn. 3, 447–462 (2009)

    Article  MathSciNet  Google Scholar 

  25. Ji, C., Jiang, D., Shi, N.: Analysis of a predator prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation. J. Math. Anal. Appl. 359, 482–498 (2009)

    Article  MathSciNet  Google Scholar 

  26. Ji, C., Jiang, D., Shi, N.: A note on a predator prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation. J. Math. Anal. Appl. 377, 435–440 (2011)

    Article  MathSciNet  Google Scholar 

  27. Xiao, D., Jennings, L.: Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting. SIAM J. Appl. Math. 65, 737–753 (2005)

    Article  MathSciNet  Google Scholar 

  28. Lenzini, P., Rebaza, J.: Non-constant predator harvesting on ratio-dependent predator prey models. Appl. Math. Sci. 4, 791–803 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Zhang, N., Chen, F., Su, Q., Wu, T.: Dynamic behaviors of a harvesting Leslie-Gower predator-prey model. Discrete Dynamics in Nature and Society, 2011, Article ID 473949, 14 pages (2011)

  30. Gupta, R.P., Chandra, P.: Bifurcation analysis of modified Leslie-Gower predator prey model with Michaelis Menten type prey harvesting. J. Math. Anal. Appl. 398, 278–295 (2013)

    Article  MathSciNet  Google Scholar 

  31. Bohner, M., Peterson, A.: Dynamic equations on time scales: an introduction with applications. Birkauser, Boston (2001)

    Chapter  Google Scholar 

  32. Zhang, B., Fan, M.: A remark on the application of coincidence degree to periodicity of dynamic equations on time scales. J. Northeast Normal Univ. (Natural Science Edition) 39, 1–3 (2007) (in Chinese)

  33. Xia, Y.H., Gu, X., Wong, P.J.Y., Abbas, S.: Application of Mawhin’s coincidence degree and matrix spectral theory to a delayed system. Abstr. Appl. Anal., Article ID 940287, p. 19 (2012)

Download references

Acknowledgments

We are thankful to the anonymous reviewers for their valuable comments and suggestions which help us to improve the manuscript considerably. This work was supported by project “NBHM / IITMANDI / 2013 / NBHM / SYA / 45 / 02” National Board of Higher Mathematic, Government of India, and partially supported by the Ministerio de Economia y Competitividad of Spain under Grant MTM2013-43014-P, XUNTA under grant R2014/002, and co-financed by the European Community fund FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Abbas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, S., Abbas, S. & Nieto, J.J. Periodic Solutions of a Nonautonomous Leslie-Gower Predator-Prey Model with Non-Linear Type Prey Harvesting on Time Scales. Differ Equ Dyn Syst 27, 357–367 (2019). https://doi.org/10.1007/s12591-015-0267-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-015-0267-5

Keywords

Mathematics Subject Classification

Navigation