Skip to main content

Advertisement

Log in

Mechanical, thermal and fire properties of sustainable rigid polyurethane foam derived from cashew nut shell liquid

  • Research Article
  • Published:
International Journal of Plastics Technology

Abstract

Global efforts to find renewable feed stocks for the chemical industry are aimed at replacing fossil reserves and a reduction in global warming by employing environmently friendly technologies (green chemistry approaches) for specialty chemical manufacturing. Cardanol obtained from “Cashew Nut Shell Liquid” (CNSL) is a renewable resource of immense potential. Present work describes the synthesis of bio-based polyol for rigid polyurethane foam via step wise oxazolidine route. Synthesized polyol was characterized by spectral analysis. The foaming characteristics were studied, and the polyol were successfully used in making rigid Polyurethane foams with good mechanical, thermal and fire properties.

Polyurethane rigid foam synthesized from cashew nut shell liquid

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wood G (1990) The ICI Polyurethane Handbook, 2nd edn. Wiley Chichester, New York

  2. Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97:1086–1091

    Article  CAS  Google Scholar 

  3. Phani Kumar P, Paramashivappa RP, Vithayathil J, Subba PV, Rao AS (2002) Process for isolation of cardanol from technical cashew (Anacardium occidentale L.) nut shell liquid. J Agric Food Chem 50:4705

    Article  CAS  Google Scholar 

  4. Strochchi A, Lerker GA (1979) Chemistry and applications of phenolic resin-polymer properties and applications. J Am Oil Chem Soc 56:616

    Article  Google Scholar 

  5. Das P, Sreelatha T, Ganesh A (2004) Bio oil from pyrolysis of cashew nut shell-characterisation and related properties. J Biomass Bioenerg 27:265

    Article  CAS  Google Scholar 

  6. Gandhi T, Patel M, Dholakiya B (2012) Studies on effect of various solvents on extraction of cashew nut shell liquid (CNSL) and isolation of major phenolic constituents from extracted CNSL. J Nat Prod Plant Resour 2(1):135

    CAS  Google Scholar 

  7. Tyman JHP, Wilcynski D, Kashsani MA (1978) Compositional studies on technical cashew nut shell liquid (CNSL) by chromatography and mass spectroscopy. J Am Oil Chem Soc 55:663–668

    Article  CAS  Google Scholar 

  8. Attanasi OA, Buratti S, Filippone P (1995) Regioselective bromination of cardanol derivatives, organic preparations and procedures international. Org Prep Proced Int 27:645–650

    Article  CAS  Google Scholar 

  9. Short EL, Tychopoulos V, Tyman JHP (1992) Long chain phenols—part 30: a rate study of the mannich reaction of phenols (with particular reference to 3-pentadecylphenol). J Chem Technol Biotechnol 53:389

    Article  CAS  Google Scholar 

  10. Thien DT, Vankhoi N, Khang DQ, Vanluyen D (1996) Modification of rubber by cardanol- formaldehyde resins and epoxidized cardanol. J Macromol Sci A33:1963

    Article  CAS  Google Scholar 

  11. Ogunleye OO, Oyawale A (2008) Effects of castor Oil on the physical properties of polyether based FlexiblePolyurethane foam. Adv Nat Appl Sci 2(1):10–15

    CAS  Google Scholar 

  12. Petrović ZS (2008) Polyurethanes from vegetable oils, polymer reviews. Polym Rev 48:109–155

    Article  Google Scholar 

  13. Tan SG, Chow WS (2010) Thermal properties, curing characteristics and water absorption of soybean oil-based thermoset. Polym−Plast Technol Eng 49:581–1590

    Article  Google Scholar 

  14. Narine SS, Kong X, Bouzidi L, Sporns P (2007) Physical properties of polyurethanes produced from polyols from seed oils: I. Elastomers. J Am Oil Chem Soc 84:55–63

    Article  CAS  Google Scholar 

  15. Sultania M, Rai JSP, Srivastava D (2010) Studies on the synthesis and curing of epoxidized novolac vinyl ester resin from renewable resource material. Eur Polym J 46(10):2019–2032

    Article  CAS  Google Scholar 

  16. Hill K (2001) Fats and oils as oleochemical raw materials. J Oleo Sci 50:433–444

    Article  CAS  Google Scholar 

  17. Höfer R, Daute P, Gru¨tzmacher R, Westfechtel AJ (1997) Oleochemical polyols—a New Raw material source for polyurethane coatings and floorings. J Coat Technol 69:65–72

    Article  Google Scholar 

  18. Ogunniyi DS (2006) Caster oil: a vital industrial raw material. Bioresour Technol 97:1086–1091

  19. Mothe G, de Araújo CR (2000) Properties of polyurethane elastomers and composites by thermal analysis. Thermochim Acta 357–358:321–325

    Article  Google Scholar 

  20. Veronese VB, Menger RK, Forte MMC, Petzhold CL (2011) Rigid polyurethane foam based on modified vegetable oil. J Appl Polym Sci 120:530–537

    Article  CAS  Google Scholar 

  21. Ionescu M, Wan X, Bilić N, Petrovic ZS (2012) Polyols and rigid polyurethane foams from cashew nut shell liquid. J Polym Environ 20:647–658

    Article  CAS  Google Scholar 

  22. Tanaka R, Hirose S, Hatakeyama H (2008) Preparation and characterization of polyurethane foams using a palm Oil-based polyol. Bioresour Technol 99:3810–3816

    Article  CAS  Google Scholar 

  23. Norin ZKS, Ooi TL, Salmiah A (2004) Effect of triethanolamine on the properties of palm-based flexible polyurethane foams. J Oil Palm Res 16:66–71

    Google Scholar 

  24. Chian KS, Gan LH (1998) Development of a rigid polyurethane foam from palm oil. J Appl Polym Sci 68:509–515

    Article  CAS  Google Scholar 

  25. Tramontini M, Angiolini L (1994) Mannich bases-chemistry and uses. CRC Press, New York, pp 65–163

    Google Scholar 

  26. Gandhi T, Patel M, Dholakiya B (2013) Extraction protocol for isolation of CNSL by using protic and aprotic solvents from cashew nut and study of their physico-chemical parameter. Pol J Chem Technol 15(4):24–27

    Article  CAS  Google Scholar 

  27. Singh H, Sharma TP, Jain AK (2007) Reactivity of the raw materials and their effects on the structure and properties of rigid polyurethane foams. J Appl Polym Sci 106:1014–1023

    Article  CAS  Google Scholar 

  28. Menon ARR, Pillai CKS, Sudha JD, Mathew AG (1985) Cashew nut shell liquids Its polymeric and other industrial products. J Sci Ind Res 44:324–338

    CAS  Google Scholar 

  29. Saint-Michel F, Chazeau L, Cavaille JY, Chabert E (2006) Mechanical properties of high density polyurethane foams: effect of the filler size. Comp Sci Technol 66(15):2700–2708

    Article  CAS  Google Scholar 

  30. Gandhi T, Patel M, Dholakiya B (2014) Synthesis and characterization of different types of epoxide-based Mannich polyols from low-cost cashew nut shell liquid. Res Chem Intermed 40:1223–1232

    Article  CAS  Google Scholar 

  31. Dvir H, Gottlieb M, Daren S, Tartakovsky S (2003) Optimization of a flame-retarded polypropylene composite. Comp Sci Technol 63:1865–1875

    Article  CAS  Google Scholar 

  32. Thirumal M, Khastgir D, Singha NK, Manjunath BS, Naik YP (2008) Effect of foam density on the properties of water blown rigid polyurethane foam. J Appl Polym Sci 108:1810–1817

    Article  CAS  Google Scholar 

  33. Jang J, Hyuksung C, Myonghwan K, Hyunje S (1998) The effect of flame retardant on the flammability and mechanical properties of paper-sludge/phenolic composite. Polym Test 19:269–279

    Article  Google Scholar 

  34. Niyogi D, Kumar R, Gandhi KS (1992) Modeling of bubble-size distribution in free rise polyurethane foams. AIChE J 38:1170–1184

    Article  CAS  Google Scholar 

  35. Oertel G (1993) Polyurethane handbook. Hanser Publishers, NewYork

    Google Scholar 

  36. Liang K, Shi SQ (2011) Nanoclay filled soy-based polyurethane foam. J Appl Polym Sci 119:1857–1863

    Article  CAS  Google Scholar 

  37. Gedde U (1995) Polymer physics. Chapman & Hall, London, p 8

    Google Scholar 

  38. Athawale V, Kolekar S (1998) Interpenetrating polymer network based on polyol modified castor oil polyurethane and polymethyl methacrylate. Eur Polym J 34(10):1147–1451

    Article  Google Scholar 

  39. Wirpsza Z, Kemp TJ, Skup A (1993) Polyurethanes: chemistry, technology and applications. Ellis Horwood, Chichester

    Google Scholar 

  40. Bandyopadhyay-Ghosh S, Ghosh S, Sain M (2010) Synthesis of soy-polyol by two steps continuous route and development of soy-based polyurethane foam. J Polym Environ 18:437–442

    Article  CAS  Google Scholar 

  41. Yang WP, Macosko CW, Wellinghoff ST (1986) Thermal degradation of urethanes based on 4, 4′-diphenylmethane diisocyanate and 1, 4 butanediol (MDI/BDO). Polymer 27:1235–1240

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of the work from the sardar vallabhbhai national institute of technology, Gujarat-India is gratefully acknowledged. The author is very much thankful to Mr. Hitesh sloanki and Mr. Jagdish from Atira (Ahmadabad Textile Industry’s Research Association) Gujarat-India for their assistance in mechanical, thermal and fire properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharatkumar Z. Dholakiya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 10592 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandhi, T.S., Patel, M.R. & Dholakiya, B.Z. Mechanical, thermal and fire properties of sustainable rigid polyurethane foam derived from cashew nut shell liquid. Int J Plast Technol 19, 30–46 (2015). https://doi.org/10.1007/s12588-015-9114-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-015-9114-3

Keywords

Navigation