Skip to main content

Advertisement

Log in

Escape responses of the Japanese anchovy Engraulis japonicus under elevated temperature and CO2 conditions

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

An increasing number of papers have been published on the effects of ocean acidification and warming on fishes over the last several years. However, there is little information on how these environmental changes affect the swimming behavior of fish. This study examined the escape response under elevated CO2 concentration and temperature of the Japanese anchovy Engraulis japonicus. Following acclimation to four conditions (CO2 400/1000 ppm, temperature 15/19 °C) for 1 month, the fish were tested for escape response through kinematic analysis of startle reactions to a mechanical stimulus. The response was recorded with a high speed video camera of 500 frames per second. The result showed turning rate was significantly higher at 19 °C than at 15 °C. Neither CO2 nor temperature affected the kinematic parameters analyzed (the escape trajectory, swimming velocity, acceleration, escape direction, or frequency of single and double bends), with the exception of the turning rate that was significantly higher at 19 °C than at 15 °C. However, we must clarify how future oceanic environmental changes affect escape responses of schooling fish and prey-predator interactions under more rigorous experimental conditions, to elaborate our prediction capacity for the trajectory of anchovy populations and thereby assess possible implications for anchovy fisheries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. IPCC (2013) Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on climate change. Cambridge University Press, Cambridge

  2. Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241

    Article  CAS  Google Scholar 

  3. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432

    Article  CAS  Google Scholar 

  4. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528

    Article  CAS  PubMed  Google Scholar 

  5. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Ann Rev Mar Sci. doi:10.1146/annurev-marine-041911-111611.1118

    Google Scholar 

  6. Branch TA, DeJoseph BM, Ray LJ, Wagner CA (2013) Impacts of ocean acidification on marine seafood. Trends Ecol Evol 28:178–186

    Article  PubMed  Google Scholar 

  7. Harvey BP, Gwynn-Jones D, Moore PJ (2013) Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol Evol 3:1016–1030

    Article  PubMed  PubMed Central  Google Scholar 

  8. Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, Døving KB (2009) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci USA 106:1848–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferrari MCO, McCormick MI, Munday PL, Meekan MG, Dixson DL, Lönnstedt O, Chivers DP (2012) Effects of ocean acidification on visual risk assessment in coral reef fishes. Funct Ecol 26:553–558

    Article  Google Scholar 

  10. Chung W-S, Marshall NJ, Watson S-A, Munday PL, Nilsson GE (2014) Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors. J Exp Biol 217:323–326

    Article  CAS  PubMed  Google Scholar 

  11. Simpson SD, Munday PL, Wittenrich ML, Manassa R, Dixson DL, Gagliano M, Yan HY (2011) Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol Lett 7:917–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ferrari MCO, Manassa RP, Dixson DL, Munday PL, McCormick MI, Meekan MG, Andrew H, Chivers DP (2012) Effects of ocean acidification on learning in coral reef fishes. PLoS One. doi:10.1371/journal.pone.0031478

    Google Scholar 

  13. Domenici P, Allan B, McCormick MI, Munday PL (2012) Elevated carbon dioxide affects behavioural lateralization in a coral reef fish. Biol Lett 8:78–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Munday PL, Dixson DL, McCormick MI, Meekan M, Ferrari MCO, Chivers DP (2010) Replenishment of fish populations is threatened by ocean acidification. Proc Natl Acad Sci USA 107:12930–12934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Allan BJM, Domenici P, McCormick MI, Watson S-A, Munday PL (2013) Elevated CO2 affects predator-prey interactions through altered performance. PLoS One. doi:10.1371/journal.pone.0058520

    Google Scholar 

  16. Nilsson GE, Dixson DL, Domenici P, McCormick MI, Sørensen C, Watson S-A, Munday PL (2012) Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nature Clim Change 2:201–204

    Article  CAS  Google Scholar 

  17. Chivers DP, McCormick MI, Nilsson GE, Munday PL, Watson S-A, Meekan MG, Mitchell MD, Corkill KC, Ferrari MC (2014) Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference. Glob Change Biol 20:515–522

    Article  Google Scholar 

  18. Hamilton TJ, Holcombe A, Tresguerres M (2014) CO2-induced ocean acidification increases anxiety in Rockfish via alteration of GABAA receptor functioning. Proc R Soc B. doi:10.1098/rspb.2013.2509

    Google Scholar 

  19. Bignami S, Sponaugle S, Cowen RK (2013) Response to ocean acidification in larvae of a large tropical marine fish, Rachycentron canadum. Glob Change Biol 19:996–1006

    Article  Google Scholar 

  20. Bignami S, Sponaugle S, Cowen RK (2014) Effects of ocean acidification on the larvae of a high-value pelagic fisheries species, mahi-mahi Coryphaena hippurus. Aquat Biol 21:249–260

    Article  Google Scholar 

  21. Maneja RH, Frommel AY, Browman HI, Clemmesen C, Geffen AJ, Folkvord A, Piatkowski U, Durif CMF, Bjelland R, Skiftesvik AB (2013) The swimming kinematics of larval Atlantic cod, Gadus morhua L., are resilient to elevated seawater pCO2. Mar Biol 160:1963–1972

    Article  CAS  Google Scholar 

  22. Melzner F, Göbel S, Langenbuch M, Gutowska MA, Pörtner HO, Lucassen M (2009) Swimming performance in Atlantic cod (Gadus morhua) following long-term (4–12 months) acclimation to elevated seawater Pco2. Aquat Toxicol 92:30–37

    Article  CAS  PubMed  Google Scholar 

  23. Domenici P (2010) Escape responses in fish: kinematics, performance and behavior. In: Domenici P, Kapoor BG (eds) Fish locomotion: an eco-ethological perspective. Science Publisher, New Hampshire, pp 123–170

    Chapter  Google Scholar 

  24. Domenici P, Blake RS (1997) The kinematics and performance of fish fast-start swimming. J Exp Biol 200:1165–1178

    PubMed  Google Scholar 

  25. Domenici P (2010) Context-dependent variability in the components of fish escape response: integrating locomotor performance and behavior. J Exp Zool 313A:59–79

    Article  Google Scholar 

  26. Eaton RC, Lee RKK, Foreman MB (2001) The Mauthner cell and other identified neurons of the brainstem escape network of fish. Prog Neurobiol 63:467–485

    Article  CAS  PubMed  Google Scholar 

  27. Wood CM, McDonald DG (1997) Global warming: implications for freshwater and marine fish. Cambridge University Press, Cambridge

    Book  Google Scholar 

  28. Currie S, Schulte P (2014) Thermal stress. In: Evans DH et al (eds) The physiology of fishes. CRC Press, Florida, pp 257–287

    Google Scholar 

  29. Willmer P, Stone G, Johnston I (2005) Environmental physiology of animals. Blackwell Science, Oxford

    Google Scholar 

  30. Boucher MA, McAdam SO, Shrimpton JM (2014) The effect of temperature and substrate on the growth, development and survival of larval white sturgeon. Aquaculture 430:139–148

    Article  Google Scholar 

  31. Ma Z (2014) Food ingestion, prey selectivity, feeding incidence, and performance of yellowtail kingfish Seriola lalandi larvae under constant and varying temperatures. Aquac Int 22:1317–1330

    Article  Google Scholar 

  32. Politis SN, Dahlke FT, Butts IAE, Peck MA, Trippel EA (2014) Temperature, paternity and asynchronous hatching influence early developmental characteristics of larval Atlantic cod, Gadus morhua. J Exp Mar Biol Ecol 459:70–79

    Article  Google Scholar 

  33. Bartolini T, Butail S, Porfiri M (2014) Temperature influences sociality and activity of freshwater fish. Environ Biol Fishes 98:825–832

    Article  Google Scholar 

  34. Johansen JL, Messmer V, Coker DJ, Hoey AS, Pratchett MS (2014) Increasing ocean temperatures reduce activity patterns of a large commercially important coral reef fish. Glob Chang Biol 20:1067–1074

    Article  CAS  PubMed  Google Scholar 

  35. Malavasi S, Cipolato G, Cioni C, Torricelli P, Alleva E, Manciocco A, Tony M (2013) Effects of temperature on the antipredator behaviour and on the cholinergic expression in the European sea bass (Dicentrarchus labrax L.) juveniles. Ethology 119:592–604

    Article  Google Scholar 

  36. Clarke A, Johnston NM (1999) Scaling of metabolic rate with body mass and temperature in teleost fish. J Anim Ecol 68:893–905

    Article  Google Scholar 

  37. Tirsgaard B, Behrens JW, Steffensen JF (2015) The effect of temperature and body size on metabolic scope of activity in juvenile Atlantic cod Gadus morhua L. Comp Biochem Physiol 179A:89–94

    Article  Google Scholar 

  38. Neuheimer AB, Thresher RE, Lyle JM, Semmens JM (2011) Tolerance limit for fish growth exceeded by warming waters. Nature Clim Change 1:110–113

    Article  Google Scholar 

  39. Khan JR, Pether S, Bruce M, Walker SP, Herbert NA (2014) Optimum temperatures for growth and feed conversion in cultured hapuku (Polyprion oxygeneios)—is there a link to aerobic metabolic scope and final temperature preference? Aquaculture 430:107–113

    Article  Google Scholar 

  40. Sun L, Chen H (2014) Effects of water temperature and fish size on growth and bioenergetics of cobia (Rachycentron canadum). Aquaculture 426–427:172–180

    Article  Google Scholar 

  41. Almeida JR, Gravato C, Guilhermino L (2014) Effects of temperature in juvenile seabass (Dicentrarchus labrax L.) biomarker responses and behaviour: implications for environmental monitoring. Estuar Coasts 38:45–55

    Article  Google Scholar 

  42. Cai L, Liu G, Taupier R, Fang M, Johnson D, Tu Z, Huang Y (2014) Effect of temperature on swimming performance of juvenile Schizothorax prenanti. Fish Physiol Biochem 40:491–498

    Article  CAS  PubMed  Google Scholar 

  43. Pang X, Yuan XZ, Cao ZD, Fu SJ (2013) The effects of temperature and exercise training on swimming performance in juvenile qingbo (Spinibarbus sinensis). J Comp Physiol 183B:99–108

    Article  Google Scholar 

  44. Batty RS, Blaxter J, Fretwell K (1993) Effect of temperature on the escape responses of larval herring, Clupea harengus. Mar Biol 115:523–528

    Article  Google Scholar 

  45. Johnson TP, Bennett AF (1995) The thermal acclimation of burst escape performance in fish: an integrated study of molecular and cellular physiology and organismal performance. J Exp Biol 198:2165–2175

    PubMed  Google Scholar 

  46. Manciocco A, Toni M, Tedesco A, Malavasi S, Alleva E, Cioni C (2015) The acclimation of European sea bass (Dicentrarchus labrax) to temperature: behavioural and neurochemical responses. Ethology 121:68–83

    Article  Google Scholar 

  47. Allan BJM, Miller GB, McCormick MI, Domenici P, Munday PL (2014) Parental effects improve escape performance of juvenile reef fish in a high-CO2 world. Proc R Soc B. doi:10.1098/rspb.2013.2179

    PubMed  PubMed Central  Google Scholar 

  48. Domenici PL, Allan BJM, Watson SA, McCormick MI, Munday PL (2014) Shifting from right to left: the combined effect of elevated CO2 and temperature on behavioural lateralization in a coral reef fish. PLoS One. doi:10.1371/journal.pone.0087969

    Google Scholar 

  49. FAO (2014) The state of world fisheries and aquaculture 2014. FAO, Rome

    Google Scholar 

  50. Takasuka A, Oozeki Y, Kimura R, Kubota H, Aoki I (2004) Growth-selective predation hypothesis revisited for larval anchovy in offshore waters: cannibalism by juveniles versus predation by skipjack tunas. Mar Ecol Prog Ser 278:297–302

    Article  Google Scholar 

  51. Whitehead PJP, Nelson GJ, Wongratana T (1988) FAO species catalogue Vol. 7. Clupeoid fishes of the world (suborder Clupeoidei): an annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, shads, anchovies and wolf-herrings, Part 2 Engraulididae. FAO Fisheries Synopsis, Rome

  52. Funamoto T, Aoki I (2002) Reproductive ecology of Japanese anchovy off the Pacific coast of eastern Honshu, Japan. J Fish Biol 60:154–169

    Article  Google Scholar 

  53. Belkin IM (2009) Rapid warming of large marine ecosystems. Prog Oceanogr 81:207–213

    Article  Google Scholar 

  54. Pierrot D, Lewis E, Wallace D (2006) CO2SYS Dos program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. US Department of Energy, Oak Ridge, Tennessee

  55. Lefrançois C, Shingles A, Domenici P (2005) The effect of hypoxia on locomotor performance and behaviour during escape in Liza aurata. J Fish Biol 67:1711–1729

    Article  Google Scholar 

  56. Walker JA (1998) Estimating velocities and accelerations of animal locomotion: a simulation experiment comparing numerical differentiation algorithms. J Exp Biol 201:981–995

    Google Scholar 

  57. Webb PW (1976) The effect of size on the fast-start performance of rainbow trout Salmo gairdneri, and a consideration of piscivorous predator-prey interactions. J Exp Biol 65:157–177

    CAS  PubMed  Google Scholar 

  58. Domenici P, Blake RW (1993) Escape trajectories in angelfish (Pterophyllum eimekei). J Exp Biol 177:253–272

    Google Scholar 

  59. Domenici P (2001) The scaling of locomotor performance in predator–prey encounters: from fish to killer whales. Comp Biochem Physiol 131A:169–182

    Article  CAS  Google Scholar 

  60. Preuss T, Faber DS (2003) Central cellular mechanisms underlying temperature-dependent changes in the goldfish startle-escape behaviour. J Neurosci 23:5617–5626

    CAS  PubMed  Google Scholar 

  61. Webb PW (1978) Temperature effects on acceleration of rainbow trout, Salmo gairneri. J Fish Res Board Can 35:1417–1422

    Article  Google Scholar 

  62. Hayasi S (1967) A note on the biology and fishery of the Japanese anchovy Engraulis japonica (Houttuyn). Califonia coorperative oceanic fisheries investigations, California

    Google Scholar 

  63. Walker JA, Ghalambor CK, Griset OL, McKenney D, Reznick DN (2005) Do faster starts increase the probability of evading predators? Funct Ecol 19:808–815

    Article  Google Scholar 

  64. Major PF (1978) Predator-pray interactions to two schooling fishes Caranx ignobilis and Stolepholus purpureus. Anim Behav 26:760–777

    Article  Google Scholar 

  65. Domenici P, Batty RS (1997) Escape behaviour of solitary herring (Clupea harengus) and comparisons with schooling individuals. Mar Biol 128:29–38

    Article  Google Scholar 

  66. Cornwall CE, Hurd CL (2015) Experimental design in ocean acidification: problems and solutions. ICES J Mar Sci. doi:10.1093/icesjms/fsv118

    Google Scholar 

Download references

Acknowledgments

This study was partly supported by Strategic Japanese-Chinese Cooperative Program on “Climate Change” (2012–2014). We thank Dr. Kazuki Yokouchi for his support with the statistical analysis of this study. Thanks are also due to Ms. Mizuri Murata and Ms. Peeraporn Punchai for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nopparat Nasuchon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasuchon, N., Yagi, M., Kawabata, Y. et al. Escape responses of the Japanese anchovy Engraulis japonicus under elevated temperature and CO2 conditions. Fish Sci 82, 435–444 (2016). https://doi.org/10.1007/s12562-016-0974-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-016-0974-z

Keywords

Navigation