Skip to main content
Log in

Effects of dietary protein levels on growth, feed utilization, body composition and ammonia–nitrogen excretion in juvenile Nibea diacanthus

  • Original Article
  • Aquaculture
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Juvenile Nibea diacanthus were fed various dietary protein levels, and their growth performance, feed utilization, carcass proximate composition and 24-h postprandial ammonia–nitrogen excretion were investigated. Five isoenergetic and isolipidic experimental diets, containing various protein levels ranging from 36 to 52 % by a 4 % increment, were formulated. Each diet was randomly fed to triplicate groups of 25 juvenile N. diacanthus (initial weight 62.85 ± 0.32 g) for 8 weeks. Highest weight gain, specific growth rate, feed efficiency, protein efficiency ratio and protein retention were obtained at 48 % dietary protein levels (P < 0.05). As dietary protein levels increased, feed intake, hepatosomatic index and viscerosomatic index declined significantly. Similarly, the ammonia–nitrogen excretion rate was largely inversely correlated with dietary protein levels, with the lowest value appearing in the 48 % group (P < 0.05). High-protein diets resulted in higher whole-body and muscle protein contents and produced a significant effect on muscle amino acid profile. Also, total essential amino acid pattern of the muscle was significantly correlated to those of dietary proteins. Analysis of specific growth rate and weight gain by broken-line regression indicated that the estimated optimal dietary levels of protein for juvenile N. diacanthus were 48.66–48.94 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lee SM, Park CS, Bang IC (2002) Dietary protein requirement of young Japanese flounder Paralichthys olivaceus fed isocaloric diets. Fish Sci 68:158–164

    Article  CAS  Google Scholar 

  2. Kim KW, Wang XJ, Bai SC (2001) Reevaluation of the optimum dietary protein level for the maximum growth of juvenile Korean rockfish, Sebastes schlegeli (Hilgendorf). Aquac Res 32:119–125

    Article  Google Scholar 

  3. Yang SD, Liou CH, Liu FG (2002) Effects of dietary protein level on growth performance, carcass composition and ammonia excretion in juvenile silver perch (Bidyanus bidyanus). Aquaculture 213:363–372

    Article  CAS  Google Scholar 

  4. National Research Council (2011) Nutrient requirements of fish and shrimp. National Academies, Washington, pp 70–71

    Google Scholar 

  5. McGoogan BB, Gatlin DM III (1999) Dietary manipulations affecting growth and nitrogenous waste production of red drum, (Sciaenops ocellatus) I. Effects of dietary protein and energy levels. Aquaculture 178:333–348

    Article  CAS  Google Scholar 

  6. Tibbetts SM, Lall SP, Anderson DM (2000) Dietary protein requirement of juvenile American eel (Anguilla rostrata) fed practical diets. Aquaculture 186:145–155

    Article  CAS  Google Scholar 

  7. Jauncey K (1982) The effects of varying dietary protein level on the growth, food conversion, protein utilization and body composition of juvenile tilapias (Sarotherodon mossambicus). Aquaculture 27:43–54

    Article  CAS  Google Scholar 

  8. Vergara JM, Fernandez-Palacios H, Robaina L, Jauncey K, De La Higuera M, Izquierdo M (1996) The effects of varying dietary protein level on the growth, feed efficiency, protein utilization and body composition of gilthead sea bream fry. Fish Sci 62:620–623

    CAS  Google Scholar 

  9. Chen HD, Zheng JH, Shen ZK (2011) Technique for artificial breeding of spotted drum N. diacanthus. Fish Sci 30:501–504 (in Chinese)

    Google Scholar 

  10. Elliott JM (1976) The energetics of feeding, metabolism and growth of brown trout, Salmo trutta, in relation to body weight, water temperature and ration size. J Anim Ecol 45:923–948

    Article  Google Scholar 

  11. Webb KA Jr, Gatlin DM III (2003) Effects of dietary protein level and form on production characteristics and ammonia excretion of red drum (Sciaenops ocellatus). Aquaculture 225:17–26

    Article  CAS  Google Scholar 

  12. Ming FW (1985) Ammonia excretion rate as an index for comparing efficiency of dietary protein utilization among rainbow trout (Salmo gairdneri) of different strains. Aquaculture 46:27–35

    Article  CAS  Google Scholar 

  13. Davis DA, Arnold CR (1997) Response of Atlantic croaker fingerlings to practical diet formulations with varying protein and energy contents. J World Aquac Soc 28:241–248

    Article  Google Scholar 

  14. Thoman ES, Davis DA, Arnold CR (1999) Evaluation of growout diets with varying protein and energy levels for red drum (Sciaenops ocellatus). Aquaculture 176:343–353

    Article  CAS  Google Scholar 

  15. Pirrozi I, Booth MA, Allan GL (2010) The interactive effects of dietary protein and energy on feed intake, growth and protein utilization of juvenile mulloway (Argyrosomus japonicus). Aquac Nutr 16:61–71

    Article  Google Scholar 

  16. Gatlin DM III (2002) Red drum, Sciaenops ocellatus. In: Webster CD, Lim CE (eds) Nutrient requirements and feeding of finish for aquaculture. CABI Publishing, New York, pp 147–158

    Chapter  Google Scholar 

  17. Zhou QC, Wu ZH, Tan BP, Chi SY, Yang QH (2006) Optimal dietary methionine requirement for juvenile cobia (Rachycentron canadum). Aquaculture 258:551–557

    Article  CAS  Google Scholar 

  18. Iversen M, Finstad B, McKinley RS, Eliassen RA (2003) The efficacy of metomidate, clove oil, Aqui-STM and Benzoakr as anaesthetics in Atlantic salmon (Salmo salar L.) smolts, and their potential stress-reducing capacity. Aquaculture 221:549–566

    Article  CAS  Google Scholar 

  19. AOAC (Association of Official Analytical Chemists) (1990) Official methods of analysis. In: Helrich K (ed) Association of official analytical chemists, 15th edn. AOAC International Publishers, Arlington, p 1298

    Google Scholar 

  20. Folch J, Lee M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 226:477–509

    Google Scholar 

  21. Yigit M, Koshio S, Aral O, Karaali B, Karayucel S (2003) Ammonia nitrogen excretion rate—an index for evaluating protein quality of three fed fishes for the Black Sea turbot. Isr J Aquac Bamid 55:69–76

    Google Scholar 

  22. Robbins KR, Saxton AM, Southern LL (2006) Estimation of nutrient requirements using broken-line regression analysis. J Anim Sci 84:155–165

    Google Scholar 

  23. Wang Y, Guo JL, Li K, Bureau DP (2006) Effects of dietary protein and energy levels on growth, feed utilization and body composition of cuneate drum (Nibea miichthioides). Aquaculture 252:421–428

    Article  CAS  Google Scholar 

  24. Lee HM, Cho KC, Lee JE, Yang SG (2001) Dietary protein requirement of juvenile giant croaker, Nibea japonica Temminck and Schlegel. Aquac Res 32:112–118

    Article  Google Scholar 

  25. Duan Q, Mai K, Zhong H, Si L, Wang X (2001) Studies on nutrition of large yellow croaker, Pseudosciaena crocea R.: 1. Growth response to graded levels of dietary protein and lipid. Aquac Res 32:46–52

    Article  CAS  Google Scholar 

  26. Chatzifotis S, Panagiotidou M, Divanach P (2012) Effect of protein and lipid dietary levels on the growth of juvenile meagre (Argyrosomus regius). Aquac Int 20:91–98

    Article  CAS  Google Scholar 

  27. Akpιnar Z, Sevgili H, Özgen T, Demir A, Emre Y (2012) Dietary protein requirement of juvenile shi drum, Umbrina cirrosa (L.). Aquac Res 43:421–429

    Article  Google Scholar 

  28. Rueda-López S, Lazo JP, Reyes GC, Viana MT (2011) Effect of dietary protein and energy levels on growth, survival and body composition of juvenile Totoaba macdonaldi. Aquaculture 319:385–390

    Article  Google Scholar 

  29. Serrano JA, Nematipour GR, Gatlin DM III (1992) Dietary protein requirement of the red drum (Sciaenops ocellatus) and relative use of dietary carbohydrate and lipid. Aquaculture 101:283–291

    Article  CAS  Google Scholar 

  30. Elangovan A, Shim KF (1997) Growth response of juvenile Barbodes altus fed isocaloric diets with variable protein levels. Aquaculture 158:321–329

    Article  Google Scholar 

  31. Kim LO, Lee SM (2005) Effects of the dietary protein and lipid levels on growth and body composition of bagrid catfish, Pseudobagrus fulvidraco. Aquaculture 243:323–329

    Article  CAS  Google Scholar 

  32. Zhang J, Zhou F, Wang LL, Shao Q, Xu Z, Xu J (2010) Dietary protein requirement of juvenile Black Sea bream, Sparus macrocephalus. J World Aquac Soc 41:151–164

    Article  CAS  Google Scholar 

  33. Moore BJ, Hung SSO, Medrano JF (1988) Protein requirement of hatchery-produced juvenile white sturgeon (Acipenser transmontanus). Aquaculture 71:235–245

    Article  Google Scholar 

  34. Bureau DP, Kaushik SJ, Cho CY (2002) Bioenergetics. In: Halves JE, Hardy RW (eds) Fish nutrition, 3rd edn. Academic Press, California, pp 1–59

    Google Scholar 

  35. Vivas M, Rubio VC, Sanchez-Vazquez FJ, Mena C, Garcia BG, Madrid JA (2006) Dietary self-selection in sharpsnout seabream (Diplodus puntazzo) fed paired macronutrient feeds and challenged with protein dilution. Aquaculture 251:430–437

    Article  CAS  Google Scholar 

  36. Coutinho F, Peres H, Guerreiro I, Pousão-Ferreira P, Oliva-Teles A (2012) Dietary protein requirement of sharpsnout sea bream (Diplodus puntazzo, Cetti 1777) juveniles. Aquaculture 356:391–397

    Article  Google Scholar 

  37. Wang F, Han H, Wang Y, Ma X (2013) Growth, feed utilization and body composition of juvenile golden pompano Trachinotus ovatus fed at different dietary protein and lipid levels. Aquac Nutr 19:360–367

    Article  CAS  Google Scholar 

  38. Fortes-Silva R, Martínez FJ, Sánchez-Vázquez FJ (2011) Macronutrient selection in Nile tilapia fed gelatin capsules and challenged with protein dilution/restriction. Physiol Behav 102:356–360

    Article  PubMed  CAS  Google Scholar 

  39. Sá R, Pousão-Ferreira P, Oliva-Teles A (2008) Dietary protein requirement of white sea bream (Diplodus sargus) juveniles. Aquac Nutr 14:309–317

    Article  Google Scholar 

  40. McClelland G, Zwingelstein G, Weber JM, Brichon G (1995) Lipid composition of tissue and plasma in two Mediterranean fishes, the gilthead seabream (Chrysophyrys auratus) and the European seabass (Dicentrarchus labrax). Can J Fish Aquat Sci 52:161–170

    Article  CAS  Google Scholar 

  41. Péres H, Gonçalves P, Oliva-Teles A (1999) Glucose tolerance in gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax). Aquaculture 179:415–423

    Article  Google Scholar 

  42. Yang SD, Lin TS, Liou CH, Peng HK (2003) Influence of dietary protein levels on growth performance, carcass composition and liver lipid classes of juvenile Spinibarbus hollandi (Oshima). Aquac Res 34:661–666

    Article  Google Scholar 

  43. Islam M, Tanaka M (2004) Optimization of dietary protein requirement for pond-reared mahseer Tor putitora Hamilton (Cypriniformes: Cyprinidae). Aquac Res 35:1270–1276

    Article  CAS  Google Scholar 

  44. Kim SS, Lee KJ (2009) Dietary protein requirement of juvenile tiger puffer (Takifugu rubripes). Aquaculture 287:219–222

    Article  CAS  Google Scholar 

  45. Gaye-Siessegger J, Focken U, Becker K (2006) Effect of dietary protein/carbohydrate ratio on activities of hepatic enzymes involved in the amino acid metabolism of Nile tilapia, Oreochromis niloticus. Fish Physiol Biochem 32:275–282

    Article  CAS  Google Scholar 

  46. Rychly J (1980) Nitrogen balance in trout: II. Nitrogen excretion and retention after feeding diets with varying protein and carbohydrate levels. Aquaculture 20:343–350

    Article  CAS  Google Scholar 

  47. Cowey CB, Walton MJ (1988) Intermediary metabolism. In: Halver JE (ed) Fish nutrition. Academic Press, London, pp 260–321

    Google Scholar 

  48. Lied E, Braaten B (1984) The effect of feeding and starving, and different ratios of protein energy to total energy in the feed on the excretion of ammonia in Atlantic cod (Gadus morhua). Comp Biochem Physiol A Physiol 78:49–52

    Article  Google Scholar 

  49. Siddiqui TQ, Khan MA (2009) Effects of dietary protein levels on growth, feed utilization, protein retention efficiency and body composition of young Heteropneustes fossilis (Bloch). Fish Physiol Biochem 35:479–488

    Article  PubMed  CAS  Google Scholar 

  50. Gunasekera RM, Shim KF, Lam TJ (1997) Influence of dietary protein content on the distribution of amino acids in oocytes, serum and muscle of Nile tilapia, Oreochromis niloticus (L.). Aquaculture 152:205–221

    Article  CAS  Google Scholar 

  51. Dabrowski K, Guderly H (2002) Intermediary metabolism. In: Halver JE, Hardy RW (eds) Fish nutrition. Academic Press, London, pp 310–367

    Google Scholar 

  52. Teshima S, Alam MS, Koshio S, Ishikawa M, Kanazawa A (2002) Assessment of requirement values for essential amino acids in the prawn, Marsupenaeus japonicas (Bate). Aquac Res 33:395–402

    Article  CAS  Google Scholar 

  53. Unnikrishnan U, Paulraj R (2010) Dietary protein requirement of giant mud crab Scylla serrata juveniles fed iso-energetic formulated diets having graded protein levels. Aquac Res 41:278–294

    Article  CAS  Google Scholar 

  54. Cuzon G, Guillaume J (1997) Energy and protein: energy ratio. In: D’Abramo L, Conklin D, Akiyama D (eds) Crustacean nutrition advances in world aquaculture, vol 4. World Aquaculture Society, USA, pp 51–70

    Google Scholar 

  55. Alam MS, Watanabe WO, Carroll PM, Rezek T (2009) Effects of dietary protein and lipid levels on growth performance and body composition of Black Sea bass Centropristis striata (Linnaeus1758) during grow-out in a pilot-scale marine recirculating system. Aquac Res 40:442–449

    Article  CAS  Google Scholar 

  56. Garling DL Jr, Wilson RP (1976) Optimum dietary protein to energy ratio for channel catfish fingerlings, Ictalurus punctatus. J Nutr 106:1368–1375

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to all laboratory members for technical advice and valuable help during the feeding trial and sample analysis. Gratitude is extended to Dr. Wei for English editing. This research was supported by Grant No. A201005D06-1 from China Guangdong Oceanic and Fishery Science and Technology Foundation and No. GPKLMB201201 from Guangdong Provincial Key Laboratory of Marine Biology Open Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Wen, X., Zhao, J. et al. Effects of dietary protein levels on growth, feed utilization, body composition and ammonia–nitrogen excretion in juvenile Nibea diacanthus . Fish Sci 82, 137–146 (2016). https://doi.org/10.1007/s12562-015-0945-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-015-0945-9

Keywords

Navigation