Skip to main content

Advertisement

Log in

Identification, cDNA cloning, and expression analysis of dermatopontin in the goldfish Carassius auratus

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Fish scales are a potential source of collagen for fabricating scaffolds for cells during tissue engineering because fish collagen has a low risk of zoonosis. Since the assembly of collagen fibrils has a significant impact on the functionality of the scaffold, the ability to replicate the fibril assembly of human tissues is critical. To determine the mechanism of fish collagen fibril assembly, we first identified non-collagenous proteins (NCPs), the potential regulators of fibril assembly in vivo, and then used tandem mass spectrometry to analyze the NCPs contained in the basal plates of goldfish Carassius auratus scales, a collagenous plate which is characterized by a plywood-like assembly of collagen fibrils similar to that found in the cornea. We identified a 19-kDa acidic protein as dermatopontin, the NCP which is a possible regulator of fibril assembly in the mammalian cornea. We cloned a goldfish dermatopontin cDNA of 1,074 bp containing an open reading frame encoding 196 amino acids. Reverse transcription-PCR revealed that dermatopontin mRNA was expressed in a wide range of tissues, including scale, skin, fin, eye, and skeletal muscle. In situ hybridization revealed that dermatopontin mRNA was expressed primarily in the basal plate-producing hyposquamal scleroblasts of the scales, suggesting that the dermatopontin is linked to the collagen fibril assembly of the basal plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Takagi Y, Ura K (2007) Teleost fish scales: a unique biological model for the fabrication of materials for corneal strama regeneration. J Nanosci Nanotech 7:757–762

    Article  CAS  Google Scholar 

  2. Schnaper HW, Kleinman HK (1993) Regulation of cell function by extracellular matrix. Pediatr Nephrol 7:96–104

    Article  CAS  PubMed  Google Scholar 

  3. Streuli C (1999) Extracellular matrix remodelling and cellular differentiation. Curr Opin Cell Biol 11:634–640

    Article  CAS  PubMed  Google Scholar 

  4. Kresse H, Schönherr E (2001) Proteoglycans of the extracellular matrix and growth control. J Cell Physiol 189:266–274

    Article  CAS  PubMed  Google Scholar 

  5. Marastoni S, Ligresti G, Lorenzon E, Colombati A, Mongiat M (2008) Extracellular matrix: a matter of life and death. Connect Tissue Res 49:203–206

    Article  CAS  PubMed  Google Scholar 

  6. Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3:1863–1887

    Article  CAS  Google Scholar 

  7. Yamada S, Yamamoto K, Ikeda T, Yanagiguchi K, Hayashi Y (2014) Potency of fish collagen as a scaffold for regenerative medicine. BioMed Res Int. doi:10.1155/2014/302932

  8. Parfitt GJ, Pinali C, Young RD, Quantock AJ, Knupp C (2010) Three-dimensional reconstruction of collagen-proteglycan interactions in the mouse corneal stroma by electron tomography. J Struct Biol 170:392–397

    Article  CAS  PubMed  Google Scholar 

  9. Cooper LJ, Bentley AJ, Nieduszynski IA, Talabani S, Thomson A, Utani A, Shinkai H, Fullwood NJ, Beown GM (2006) The role of dermatopontin in the stromal organization of the cornea. Invest Ophthalmol Visual Sci 47:3303–3310

    Article  Google Scholar 

  10. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  PubMed  Google Scholar 

  11. Ohira Y, Shimizu M, Ura K, Takagi Y (2007) Scale regeneration and calcification in the goldfish Carassius auratus: quantitative and morphological process. Fish Sci 73:46–54

    Article  CAS  Google Scholar 

  12. Morse A (1945) Formic acid-sodium citrate decalcification and butyl alcohol dehydration of teeth and bones for sectioning in paraffin. J Dental Res 24:143–153

    Article  Google Scholar 

  13. MacBeath JRE, Shackleton DR, Hulmes DJS (1993) Tyrosine-rich acidic matrix protein (TRAMP) accelerates collagen fibril formation in vitro. J Biol Chem 268:19826–19832

    CAS  PubMed  Google Scholar 

  14. Takeda U, Utani A, Wu J, Adachi E, Koseki H, Taniguchi M, Matsumoto T, Ohashi T, Sato M, Shinkai H (2002) Targeted disruption of dermatopontin causes abnormal collagen fibrillogenesis. J Invest Dermatol 119:678–683

    Article  CAS  PubMed  Google Scholar 

  15. Tan Y, Iimura K, Sato T, Ura K, Takagi Y (2013) Spatiotemporal expression of the dermatopontin gene in zebrafish Danio rerio. Gene 516:277–284

    Article  CAS  PubMed  Google Scholar 

  16. Okamoto O, Fujiwara S (2006) Dermatopontin, a novel player in the biology of the extracellular matrix. Connect Tissue Res 47:177–189

    Article  CAS  PubMed  Google Scholar 

  17. Takeuchi T (2010) Structual comparison of dermatopontin amino acid sequences. Biologia 65:874–879

    Article  Google Scholar 

  18. Cronshaw AD, Macbeath JRE, Shackleton DR, Collins JF, Fothergill-Gilmore LA, Hulmes DJS (1993) TRAMP (Tyrosine Rich Acidic Matrix Protein), a protein that co-purifies with lysil oxidase from porcine skin: identification of TRAMP as the dermatan sulphate proteoglycan-associated 22 K extracellular matrix protein. Matrix 13:255–256

    Article  CAS  PubMed  Google Scholar 

  19. Neame PJ, Choi HU, Rosenberg LC (1989) The isolation and primary structure of a 22-kDa extracellular matrix protein from bovine skin. J Biol Chem 264:5474–5479

    CAS  PubMed  Google Scholar 

  20. Forbes EG, Cronshaw AD, MacBeath JRE, Hulmes DJS (1994) Tyrosine-rich acidic matrix protein (TRAMP) is a tyrosine-sulphated and widely distributed protein of the extracellular matrix. FEBS Lett 351:433–436

    Article  CAS  PubMed  Google Scholar 

  21. Superti-Furga A, Rocchi M, Schäfer BW, Gitzelmann R (1993) Complementary DNA sequence and chromosomal mapping of a human proteoglycan-binding cell-adhesion protein (dermatopontin). Genomics 17:463–467

    Article  CAS  PubMed  Google Scholar 

  22. Beanes SR, Danng C, Soo C, Ting K (2003) Skin repair and scar formation: the central role for TGF-β. Exp Rev Mol Med 5:1–11

    Article  Google Scholar 

  23. Okamoto O, Hozumi K, Katagiri F, Takahashi N, Sumiyoshi H, Matsuo N, Yoshioka H, Nomizu M, Fujiwara S (2010) Dermatopontin promotes epidermal keratinocyte adhesion via α3β1 integrin and a proteoglycan receptor. Biochemistry 49:145–155

    Article  Google Scholar 

  24. Kagan MH, Li W (2003) Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem 88:660–672

    Article  CAS  PubMed  Google Scholar 

  25. Trackman CP (2005) Diverse biological functions of extracellular collagen processing enzymes. J Cell Biochem 96:927–937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Schaefer L, Iozzo R (2008) Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J Biol Chem 283:21305–21309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Corsi A, Xu T, Chen X-D, Boyde A, Liang J, Mankani M, Sommer B, Iozzo RV, Eichstetter I, Gheron Robey P, Bianco P, Young MF (2002) Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers–Danlos-like changes in bone and other connective tissues. J Bone Miner Res 17:1180–1189

    Article  CAS  PubMed  Google Scholar 

  28. Zhang G, Chen S, Goldoni S, Calder B, Simpson H, Owens R, McQuillan D, Young M, Iozzo R, Birk D (2009) Genetic evidence for the coordinated regulation of collagen fibrillogenesis in the cornea by decorin and biglycan. J Biol Chem 284:8888–8897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Jiang X, Ye M, JIang X, Liu G, Feng S, Cui L, Zou H (2007) Method development of efficient protein extraction in bone tissue for proteome analysis. J Proteome Res 6:2287–2294

    Article  CAS  PubMed  Google Scholar 

  30. Brittijn SA, Brittijn A, Duivesteijn SJ, Belmamoune M, Bertens LFM, Bitter W, De Bruijin J, Champagne DL, Cuppen E, Flik G, Vandenbroucke-Grauls CM, Janssen RAJ, De Jjong IML, De Kloet ER, Kros A, Meijer AH, Mets JR, Van Der Sar AM, Schaafl MJM, Schlute-Merker S, Spainkll HP, Tak PP, Vereek FJ, Vervoordeldonk MJ, Vonk FJ, Witte F, Yuan H, Richardson M (2009) Zebrafish development and regeneration: new tools for biomedical research. Int J Dev Biol 53:835–850

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants in Aid from the Japanese Ministry of Education, Culture, Sports, Science and Technology (Nos. 18380109, 21380116, 24380101). Authors thank technical assistance by Ms. Michitatsu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuaki Takagi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komatsu, N., Ogawa, N., Iimura, K. et al. Identification, cDNA cloning, and expression analysis of dermatopontin in the goldfish Carassius auratus . Fish Sci 80, 1249–1256 (2014). https://doi.org/10.1007/s12562-014-0814-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-014-0814-y

Keywords

Navigation