Skip to main content
Log in

An efficient molecular technique for sexing tiger pufferfish (fugu) and the occurrence of sex reversal in a hatchery population

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

The tiger pufferfish (fugu) is one of the most important food fishes in East Asia. Since its testes are regarded as a delicacy, sex determination is economically relevant. Previous studies have identified a missense single-nucleotide polymorphism (SNP) in the Amhr2 (anti-Müllerian hormone receptor type II) gene as a strong candidate for a master sex-determining polymorphism. To distinguish genotypic sex efficiently, we developed a high-resolution melting (HRM) assay for this SNP site. By screening 396 fish from two independent crosses reared under controlled conditions, we observed perfect concordance between the SNP genotype and phenotypic sex. Thus, this method holds great potential for use in high-throughput sexing. When analyzing 293 progeny from a third cross reared under unknown conditions, we unexpectedly found that 25 % of phenotypic males exhibited female genotype. These results suggest that environmental factors such as rearing conditions could influence the sex-determination pathway in pufferfish. Alternatively, genetic modifiers might override the signals from Amhr2. This finding raises a concern regarding enhanced stock management of this species, because sex-reversed fish could compromise the sex ratio in subsequent generations. The HRM assay will also be useful for monitoring the degree of sex reversal before release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kikuchi K, Hamaguchi S (2013) Novel sex-determining genes in fish and sex chromosome evolution. Dev Dyn 242:339–353

    Article  PubMed  CAS  Google Scholar 

  2. Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M (2002) DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417:559–563

    Article  PubMed  CAS  Google Scholar 

  3. Yano A, Guyomard R, Nicol B, Jouanno E, Quillet E, Klopp C, Cabau C, Bouchez O, Fostier A, Guiguen Y (2012) An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr Biol 22:1423–1428

    Article  PubMed  CAS  Google Scholar 

  4. Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T, Fernandino JI, Somoza GM, Yokota M, Strüssmann CA (2012) A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci USA 109:2955–2959

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Myosho T, Otake H, Masuyama H, Matsuda M, Kuroki Y, Fujiyama A, Naruse K, Hamaguchi S, Sakaizumi M (2012) Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics 191:163–170

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Brunelli JP, Steele CA, Thorgaard GH (2010) Deep divergence and apparent sex-biased dispersal revealed by a Y-linked marker in rainbow trout. Mol Phylogenet Evol 56:983–990

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Shinomiya A, Otake H, Togashi K, Hamaguchi S, Sakaizumi M (2004) Field survey of sex-reversals in the medaka, Oryzias latipes: genotypic sexing of wild populations. Zool Sci 21:613–619

    Article  PubMed  Google Scholar 

  8. Fuji K, Yoshida K, Hattori K, Ozaki A, Araki K, Okauchi M, Kubota S, Okamoto N, Sakamoto T (2010) Identification of the sex-linked locus in yellowtail, Seriola quinqueradiata. Aquaculture 308:S51–S55

    Article  CAS  Google Scholar 

  9. Martínez P, Bouza C, Hermida M, Fernández J, Toro MA, Vera M, Pardo B, Millán A, Fernández C, Vilas R, Viñas A, Sánchez L, Felip A, Piferrer F, Ferreiro I, Cabaleiro S (2009) Identification of the major sex-determining region of turbot (Scophthalmus maximus). Genetics 183:1443–1452

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tanaka K, Takehana Y, Naruse K, Hamaguchi S, Sakaizumi M (2007) Evidence for different origins of sex chromosomes in closely related Oryzias fishes: substitution of the master sex-determining gene. Genetics 177:2075–2081

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Volff JN, Kondo M, Schartl M (2003) Medaka dmY/dmrt1Y is not the universal primary sex-determining gene in fish. Trends Genet 19:196–199

    Article  PubMed  CAS  Google Scholar 

  12. Charlesworth D, Mank JE (2010) The birds and the bees and the flowers and the trees: lessons from genetic mapping of sex determination in plants and animals. Genetics 186:9–31

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Kikuchi K, Kai W, Hosokawa A, Mizuno N, Suetake H, Asahina K, Suzuki Y (2007) The sex-determining locus in the tiger pufferfish, Takifugu rubripes. Genetics 175:2039–2042

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364

    Article  CAS  Google Scholar 

  15. Felip A, Young WP, Wheeler PA, Thorgaard GH (2005) An AFLP-based approach for the identification of sex-linked markers in rainbow trout (Oncorhynchus mykiss). Aquaculture 247:35–43

    Article  CAS  Google Scholar 

  16. Lee BY, Penman D, Kocher T (2003) Identification of a sex determining region in Nile tilapia (Oreochromis niloticus) using bulked segregant analysis. Anim Genet 34:379–383

    Article  PubMed  CAS  Google Scholar 

  17. Chen SL, Deng SP, Ma HY, Tian YS, Xu JY, Yang JF, Wang QY, Ji XS, Shao CW, Wang XL (2008) Molecular marker-assisted sex control in half-smooth tongue sole (Cynoglossus semilaevis). Aquaculture 283:7–12

    Article  CAS  Google Scholar 

  18. Eshel O, Shirak A, Weller J, Hulata G, Ron M (2012) Linkage and physical mapping of sex region on LG23 of Nile tilapia (Oreochromis niloticus). G3 (Bethesda) 2:35–42

    Article  CAS  Google Scholar 

  19. Yano A, Nicol B, Jouanno E, Quillet E, Fostier A, Guyomard R, Guiguen Y (2013) The sexually dimorphic on the Y-chromosome gene (sdY) is a conserved male-specific Y-chromosome sequence in many salmonids. Evol Appl 6:486–496

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Kai W, Kikuchi K, Fujita M, Suetake H, Fujiwara A, Yoshiura Y, Ototake M, Venkatesh B, Miyaki K, Suzuki Y (2005) A genetic linkage map for the tiger pufferfish, Takifugu rubripes. Genetics 171:227–238

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, Fujita M, Suetake H, Suzuki S, Hosoya S, Tohari S, Brenner S, Miyadai T, Venkatesh B, Suzuki Y, Kikuchi K (2012) A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet 8:e1002798

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Kai W, Kikuchi K, Tohari S, Chew AK, Tay A, Fujiwara A, Hosoya S, Suetake H, Naruse K, Brenner S, Suzuki Y, Venkatesh B (2011) Integration of the genetic map and genome assembly of fugu facilitates insights into distinct features of genome evolution in teleosts and mammals. Genome Biol Evol 3:424–442

    Article  PubMed  CAS  Google Scholar 

  23. Vignal A, Milan D, Sancristobal M, Eggen A (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34:275–306

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, Wittwer C (2004) Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem 50:1156–1164

    Article  PubMed  CAS  Google Scholar 

  25. Erali M, Voelkerding KV, Wittwer CT (2008) High resolution melting applications for clinical laboratory medicine. Exp Mol Pathol 85:50–58

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Kuroyanagi M, Katayama T, Imai T, Yamamoto Y, Chisada SI, Yoshiura Y, Ushijima T, Matsushita T, Fujita M, Nozawa A, Suzuki Y, Kikuchi K, Okamoto H (2013) New approach for fish breeding by chemical mutagenesis: establishment of TILLING method in fugu (Takifugu rubripes) with ENU mutagenesis. BMC Genomics 14:786

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Hosoya S, Kai W, Fujita M, Miyaki K, Suetake H, Suzuki Y, Kikuchi K (2013) The genetic architecture of growth rate in juvenile Takifugu species. Evolution 67:590–598

    Article  PubMed  Google Scholar 

  28. Yamaguchi A, Lee KH, Fujimoto H, Kadomura K, Yasumoto S, Matsuyama M (2006) Expression of the DMRT gene and its roles in early gonadal development of the Japanese pufferfish Takifugu rubripes. Comp Biochem Physiol D 1:59–68

    Google Scholar 

  29. Asahida T, Kobayashi T, Saitoh K, Nakayama I (1996) Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentration of urea. Fish Sci 62:727–730

    Article  Google Scholar 

  30. Breslauer KJ, Frank R, Blocker H, Marky LA (1986) Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci USA 83:3746–3750

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Ospina-Alvarez N, Piferrer F (2008) Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS One 3:e2837

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rubin DA (1985) Effect of pH on sex ratio in cichlids and a poecilliid (Teleostei). Copeia 1985:233–235

    Article  Google Scholar 

  33. Baroiller J, d’Cotta H (2001) Environment and sex determination in farmed fish. Comp Biochem Physiol C 130:399–409

    CAS  Google Scholar 

  34. Nanda I, Hornung U, Kondo M, Schmid M, Schartl M (2003) Common spontaneous sex-reversed XX males of the medaka Oryzias latipes. Genetics 163:245–251

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Sato T, Endo T, Yamahira K, Hamaguchi S, Sakaizumi M (2005) Induction of female-to-male sex reversal by high temperature treatment in medaka, Oryzias latipes. Zool Sci 22:985–988

    Article  PubMed  Google Scholar 

  36. Matsuda M, Shinomiya A, Kinoshita M, Suzuki A, Kobayashi T, Paul-Prasanth B, Lau EL, Hamaguchi S, Sakaizumi M, Nagahama Y (2007) DMY gene induces male development in genetically female (XX) medaka fish. Proc Natl Acad Sci USA 104:3865–3870

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Shinomiya A, Otake H, Hamaguchi S, Sakaizumi M (2010) Inherited XX sex reversal originating from wild medaka populations. Heredity 105:443–448

    Article  PubMed  CAS  Google Scholar 

  38. Hattori N, Miyashita S, Sawada Y (2012) Effective masculinization method of tiger puffer by temperature control under culture condition. In: Nagashima et al (ed) Forefront studies on puffer fish and technological development for tiger puffer production. Kouseisya Kouseikaku, Tokyo, p 57–68

  39. Lee KH, Yamaguchi A, Rashid H, Kadomura K, Yasumoto S, Matsuyama M (2009) Germ cell degeneration in high-temperature treated pufferfish, Takifugu rubripes. Sex Dev 3:225–232

    Article  PubMed  CAS  Google Scholar 

  40. Lee KH, Yamaguchi A, Rashid H, Kadomura K, Yasumoto S, Matsuyama M (2009) Estradiol-17β treatment induces intersexual gonadal development in the pufferfish, Takifugu rubripes. Zool Sci 26:639–645

    Article  PubMed  CAS  Google Scholar 

  41. Rashid H, Kitano H, Lee KH, Nii S, Shigematsu T, Kadomura K, Yamaguchi A, Matsuyama M (2007) Fugu (Takifugu rubripes) sexual differentiation: CYP19 regulation and aromatase inhibitor induced testicular development. Sex Dev 1:311–322

    Article  PubMed  CAS  Google Scholar 

  42. Matsumura Y (2005) Optimal release strategy of hatchery-produced ocellate puffer Takifugu rubripes in the Ariake Sound by mark-recapture experiments, based on the stocking effectiveness for young-of-the-year. Bull Jpn Soc Sci Fish 71:805–814

    Article  Google Scholar 

  43. Kanaiwa M, Harada Y (2008) Collapse of one-locus two-allele sex determining system by releasing sex-reversed hatchery fish. Rev Fish Sci 16:296–302

    Article  Google Scholar 

  44. Cotton S, Wedeking C (2009) Population consequences of environmental sex reversal. Conserv Biol 23:196–206

    Article  PubMed  Google Scholar 

  45. Katamachi D, Ikeda M, Sato T, Suzuki S, Kikuchi K, Ojima D (2014) Development of a multiplex PCR assay for population genetic analysis of the tiger puffer Takifugu rubripes using 16 microsatellite DNA loci. Aquaculture Sci 62:55–63

    CAS  Google Scholar 

  46. Kanaiwa M, Harada Y (2002) Genetic risk involved in stock enhancement of fish having environmental sex determination. Popul Ecol 44:7–15

    Article  Google Scholar 

  47. Nakajima H, Nitta A (2005) Homing behavior of adult ocellate puffer Takifugu rubripes to the natal spawning ground at the mouth of Ise Bay based on tagging experiments. Nippon Suisan Gakkaishi 71:736–745

    Article  Google Scholar 

Download references

Acknowledgments

We thank Naoki Mizuno, Yuka Jo, and Masashi Fujita for technical support, and Yasutoshi Yoshiura for communicating unpublished technical data. This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan, and by grants from Research and Development Projects for Application in Promoting New Policy of Agriculture, Forestry, and Fisheries, and the Program for Promotion of Basic Research Activities for Innovative Biosciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Kikuchi.

Additional information

T. Matsunaga and R. Ieda contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsunaga, T., Ieda, R., Hosoya, S. et al. An efficient molecular technique for sexing tiger pufferfish (fugu) and the occurrence of sex reversal in a hatchery population. Fish Sci 80, 933–942 (2014). https://doi.org/10.1007/s12562-014-0768-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-014-0768-0

Keywords

Navigation