Skip to main content
Log in

Growth performance and physiological condition of F1 amago salmon Oncorhynchus masou ishikawae juveniles obtained from broodstock with selective breeding for growth on a low fish-meal diet

  • Original Article
  • Aquaculture
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

A 10-week feeding trial was conducted to evaluate the growth and physiological condition of F1 amago salmon Oncorhynchus masou ishikawae juveniles obtained from broodstock that had been selected for growth on a low fish-meal (LFM) diet. F1 juveniles from broodstock showing superior or inferior growth on a LFM diet (LFM-S, LFM-I), and those from broodstock showing intermediate growth on a fish meal-based (FM) diet (FM-M), were fed a LFM diet and a FM diet. In fish fed the LFM diet, growth of LFM-S was significantly better than FM-M at 3 weeks; however, this superiority in growth disappeared at the end of the 10-week trial. Growth of LFM-I was significantly lower than LFM-S throughout the feeding trial. Growth of fish fed the FM diet was not significantly different among groups, and higher than fish fed the LFM diet. Improvements in the blood hemoglobin concentration and morphological conditions of the distal intestine and liver were observed in LFM-S fed the LFM diet. Although the effect of selective breeding was limited in F1 amago salmon, the present results suggest that continuous selection for growth with a LFM diet has potential as a method to adapt to the limited supply of fish meal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gatlin DM III, Barrows FT, Brown P, Dabrowski K, Gaylord T, Hardy RW, Herman E, Hu G, Krogdahl Å, Nelson R, Overturf K, Rust M, Sealey W, Skonberg D, Souza EJ, Stone D, Wilson R, Wurtele E (2007) Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac Res 38:551–579

    Article  CAS  Google Scholar 

  2. Tacon AGJ, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285:146–158

    Article  CAS  Google Scholar 

  3. National Research Council (2011) Nutrient requirements of fish and shrimp. The National Academies Press, Washington, DC

    Google Scholar 

  4. Yamamoto T, Suzuki N, Furuita H, Sugita T, Tanaka N, Goto T (2007) Supplemental effect of bile salts to soybean meal-based diet on growth and feed utilization of rainbow trout Oncorhynchus mykiss. Fish Sci 73:123–131

    Article  CAS  Google Scholar 

  5. Yamamoto T, Iwashita Y, Matsunari H, Sugita T, Furuita H, Akimoto A, Okamatsu K, Suzuki N (2010) Influence of fermentation conditions for soybean meal in a non-fish meal diet on the growth performance and physiological condition of rainbow trout Oncorhynchus mykiss. Aquaculture 309:173–180

    Article  CAS  Google Scholar 

  6. Yamamoto T, Matsunari H, Sugita T, Furuita H, Masumoto T, Iwashita Y, Amano S, Suzuki N (2012) Optimization of the supplemental essential amino acids to a fish meal-free diet based on fermented soybean meal for rainbow trout Oncorhynchus mykiss. Fish Sci 78:359–366

    Article  CAS  Google Scholar 

  7. Matsunari H, Iwashita Y, Suzuki N, Saito T, Akimoto A, Okamatsu K, Sugita T, Yamamoto T (2010) Influence of fermented soybean meal-based diet on the biliary bile status and intestinal and liver morphology of rainbow trout Oncorhynchus mykiss. Aquac Sci 58:243–252

    CAS  Google Scholar 

  8. Murai T, Ogata H, Hirasawa Y, Akiyama T, Nose T (1987) Portal absorption and hepatic uptake of amino acids in rainbow trout diets containing casein or crystalline amino acids. Nippon Suisan Gakkaishi 53:1847–1859

    Article  CAS  Google Scholar 

  9. Schuhmacher A, Wax C, Gropp JM (1997) Plasma amino acids in rainbow trout (Oncorhynchus mykiss) fed intact protein or a crystalline amino acid diet. Aquaculture 151:15–28

    Article  CAS  Google Scholar 

  10. Smith RR, Kincaid HL, Regenstein JM, Rumsey GL (1988) Growth, carcass composition, and taste of rainbow trout of different strains fed diets containing primarily plant or animal protein. Aquaculture 70:309–321

    Article  Google Scholar 

  11. Pierce LR, Palti Y, Silverstein JT, Barrows FT, Hallerman EM, Parsons JE (2008) Family growth response to fishmeal and plant-based diets shows genotype × diet interaction in rainbow trout (Oncorhynchus mykiss). Aquaculture 278:37–42

    Article  Google Scholar 

  12. Dupont-Nivet M, Médale F, Leonard J, Guillou SL, Tiquet F, Quillet E, Geurden I (2009) Evidence of genotype-diet interactions in the response of rainbow trout (Oncorhynchus mykiss) clones to a diet with or without fishmeal at early growth. Aquaculture 295:15–21

    Article  Google Scholar 

  13. Le Boucher R, Quillet E, Vandeputte M, Lecalvez JM, Goardon L, Chatain B, Médale F, Dupont-Nivet M (2011) Plant-based diet in rainbow trout (Oncorhynchus mykiss Walbaum): are there genotype-diet interactions for main production traits when fish are fed marine vs. plant-based diets from the first meal? Aquaculture 321:41–48

    Article  Google Scholar 

  14. Le Boucher R, Vandeputte M, Dupont-Nivet M, Quillet E, Mazurais D, Robin J, Vergnet A, Médale F, Kaushik S, Chatain B (2011) A first insight into genotype × diet interaction in European sea bass (Dicentrarchus labrax L. 1756) in the context of plant-based diet use. Aquac Res 42:583–592

    Article  Google Scholar 

  15. Venold FF, Penn MH, Krogdahl Å, Overturf K (2012) Severity of soybean meal induced distal intestinal inflammation, enterocyte proliferation rate, and fatty acid binding protein (Fabp2) level differ between strains of rainbow trout (Oncorhynchus mykiss). Aquaculture 364–365:281–292

    Article  Google Scholar 

  16. Gjedrem T, Robinson N, Rye M (2013) The importance of selective breeding in aquaculture to meet future demands for animal protein: a review. Aquaculture 350–353:117–129

    Google Scholar 

  17. Overturf K, Barrows FT, Hardy RW (2013) Effect and interaction of rainbow trout strain (Oncorhynchus mykiss) and diet type on growth and nutrient retention. Aquac Res 44:604–611

    Article  CAS  Google Scholar 

  18. Yamamoto T, Okamoto H, Iwashita Y, Matsunari H, Amano S, Suzuki N (2013) Growth performance and physiological condition of amago salmon Oncorhynchus masou ishikawae juveniles fed a low fish meal diet. Aquac Sci 61:9–17

    CAS  Google Scholar 

  19. Yamamoto T, Akimoto A, Kishi S, Unuma T, Akiyama T (1998) Apparent and true availabilities of amino acids from several protein sources for fingerling rainbow trout, common carp, and red sea bream. Fish Sci 64:448–458

    CAS  Google Scholar 

  20. Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23

    CAS  Google Scholar 

  21. Yamamoto T, Shima T, Furuita H, Suzuki N (2002) Influence of feeding diets with and without fish meal by hand and by self-feeders on feed intake, growth and nutrient utilization of juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture 214:289–305

    Article  Google Scholar 

  22. Yamamoto T, Matsunari H, Iwasaki T, Hashimoto H, Kai I, Hokazono H, Hamada K, Teruya K, Hara T, Furuita H, Mushiake K (2013) Changes in mineral concentrations in amberjack Seriola dumerili larvae during seed production: high concentrations of certain minerals in rotifers do not directly affect the mineral concentrations in larvae. Fish Sci 79:269–275

    Article  CAS  Google Scholar 

  23. Goto T, Ui T, Une M, Kuramoto T, Kihira K, Hoshita S (1996) Bile salt composition and distribution of the d-cysteinolic acid conjugated bile salts in fish. Fish Sci 62:606–609

    CAS  Google Scholar 

  24. Palti Y, Silverstein JT, Wieman H, Philips JG, Barrows FT, Parsons JE (2006) Evaluation of family growth response to fishmeal and gluten-based diets in rainbow trout (Oncorhynchus mykiss). Aquaculture 255:548–556

    Article  CAS  Google Scholar 

  25. Silverstein JT, Bosworth BG, Waldbieser GC, Wolters WR (2001) Feed intake in channel catfish: is there a genetic component? Aquac Res 32(Suppl. 1):199–205

    Article  Google Scholar 

  26. Quinton CD, Kause A, Koskela J, Ritola O (2007) Breeding salmonids for feed efficiency in current fishmeal and future plant-based diet environments. Genet Sel Evol 39:431–446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Fowler LG (1980) Substitution of soybean and cottonseed products for fish meal in diets fed to chinook and coho salmon. Prog Fish Cult 42:87–91

    Article  CAS  Google Scholar 

  28. Bureau DP, Harris AMN, Cho CY (1998) The effects of purified alcohol extracts from soy products on feed intake and growth of chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss). Aquaculture 161:27–43

    Article  CAS  Google Scholar 

  29. Olli JJ, Krogdahl Å (1995) Alcohol soluble components of soybeans seem to reduce fat digestibility in fish-meal-based diets for Atlantic salmon, Salmo salar L. Aquac Res 26:831–835

    Article  Google Scholar 

  30. Romarheim OH, Skrede A, Penn M, Mydland LT, Krogdahl Å, Storebakken T (2008) Lipid digestibility, bile drainage and development of morphological intestinal changes in rainbow trout (Oncorhynchus mykiss) fed diets containing defatted soybean meal. Aquaculture 274:329–338

    Article  CAS  Google Scholar 

  31. Iwashita Y, Suzuki N, Yamamoto T, Shibata J, Isokawa K, Soon AH, Ikehata Y, Furuita H, Sugita T, Goto T (2008) Supplemental effect of cholyltaurine and soybean lecithin to a soybean meal-based fish meal-free diet on hepatic and intestinal morphology of rainbow trout Oncorhynchus mykiss. Fish Sci 74:1083–1095

    Article  CAS  Google Scholar 

  32. Kaushik SJ, Cravedi JP, Lalles JP, Sumpter J, Fauconneau B, Laroche M (1995) Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout, Oncorhynchus mykiss. Aquaculture 133:257–274

    Article  CAS  Google Scholar 

  33. Kraugerud OF, Penn M, Storebakken T, Refstie S, Krogdahl Å, Svihus B (2007) Nutrient digestibilities and gut function in Atlantic salmon (Salmo salar) fed diets with cellulose or non-starch polysaccharides from soy. Aquaculture 273:96–107

    Article  CAS  Google Scholar 

  34. Yamamoto T, Murashita K, Matsunari H, Sugita T, Furuita H, Iwashita Y, Amano S, Suzuki N (2012) Influence of dietary soy protein and peptide products on bile acid status and distal intestinal morphology of rainbow trout Oncorhynchus mykiss. Fish Sci 78:359–366

    Article  CAS  Google Scholar 

  35. Murashita K, Akimoto A, Iwashita Y, Amano S, Suzuki N, Matsunari H, Furuita H, Sugita T, Yamamoto T (2013) Effects of biotechnologically processed soybean meals in a nonfishmeal diet on growth performance, bile acid status, and morphological condition of the distal intestine and liver of rainbow trout Oncorhynchus mykiss. Fish Sci 79:447–457

    Article  CAS  Google Scholar 

  36. Frémont L, Léger C, Petridon B, Gozzelino MT (1984) Effects of polyunsaturated fatty acid deficient diet on profiles of serum vitellogenin and lipoprotein in vitellogenic trout (Salmo gairdneri). Lipids 19:522–528

    Article  PubMed  Google Scholar 

  37. Watanabe T, Takeuchi T, Saito M, Nishimura K (1984) Effect of low protein-high calorie or essential fatty acid deficiency diet on reproduction of rainbow trout. Nippon Suisan Gakkaishi 50:1207–1215

    Article  Google Scholar 

  38. Matsunari H, Hamada K, Mushiake K, Takeuchi T (2006) Effects of taurine levels in broodstock diet on reproductive performance of yellowtail Seriola quinqueradiata. Fish Sci 72:955–960

    Article  CAS  Google Scholar 

  39. Krogdahl Å, Bakke-Mckellep AM, Røed KH, Baeverfjord G (2000) Feeding Atlantic salmon Salmo salar L. soybean products: effects on disease resistance (furunculosis), and lysozyme and IgM levels in the intestinal mucosa. Aquac Nutr 6:77–84

    Article  Google Scholar 

  40. Maita M, Maekawa J, Satoh K, Futami K, Satoh S (2006) Disease resistance and hypocholesterolemia in yellowtail Seriola quinqueradiata fed a non-fishmeal diet. Fish Sci 72:513–519

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Fisheries Agency and the Ministry of Education, Culture, Sport, Science, and Technology, Government of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, T., Okamoto, H., Furuita, H. et al. Growth performance and physiological condition of F1 amago salmon Oncorhynchus masou ishikawae juveniles obtained from broodstock with selective breeding for growth on a low fish-meal diet. Fish Sci 80, 569–579 (2014). https://doi.org/10.1007/s12562-014-0707-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-014-0707-0

Keywords

Navigation