Skip to main content
Log in

Transactivational property of chemicals via medaka glucocorticoid receptor 1b using a stable reporter gene assay

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

The transactivational property of natural and synthetic chemicals via medaka GR1b was investigated after development of a stable cell line for the reporter gene assay. In our study, cortisol was the most potent agonist among the natural corticoids assayed for potency [EC50 (concentration of agonist provoking a response halfway between the baseline and maximum response) 68 nM] and efficacy. Three artificial corticosteroids, namely, dexamethasone [EC50 16 nM, relative agonistic activity to cortisol (RAA) 144 %], prednisolone (EC50 81 nM, RAA 116 %) and clobetasol propionate (EC50 0.10 nM, RAA 220 %), showed strong agonistic activity and were more potent than the original corticoid, F. All synthetic corticoids used in our study were full agonists. Interestingly, melengestrol acetate, a synthetic progestogen, induced luciferase activity in a dose-dependent manner. Based on its EC50 value and RAA of 29 nM and 57 %, respectively, this molecule was assessed as a partial agonist. None of the other steroids and chemicals assayed in our study induced an agonistic response. In conclusion, we successfully developed a stable reporter gene assay that can be used to assess the transactivational property of glucocorticoid-like chemicals toward medaka GR1b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Charmandari E, Tsigos C, Chrousos G (2005) Endocrinology of the stress response. Annu Rev Physiol 67:259–284

    Article  PubMed  CAS  Google Scholar 

  2. McCormick SD (2001) Endocrine control of osmoregulation in teleost fish. Am Zool 41:781–794

    Article  CAS  Google Scholar 

  3. Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895

    Article  PubMed  CAS  Google Scholar 

  4. Ducouret B, Tujague M, Ashraf J, Mouchel N, Servel N, Valotaire Y, Thompson EB (1995) Cloning of a teleost fish glucocorticoid receptor shows that it contains a deoxyribonucleic acid-binding domain different from that of mammals. Endocrinology 136:3774–3783

    Article  PubMed  CAS  Google Scholar 

  5. Greenwood AK, Butler PC, White RB, DeMarco U, Pearce D, Fernald RD (2003) Multiple corticosteroid receptors in a teleost fish: distinct sequences, expression patterns, and transcriptional activities. Endocrinology 144:4226–4236

    Article  PubMed  CAS  Google Scholar 

  6. Stolte EH, van Kemenade BM, Savelkoul HF, Flik G (2006) Evolution of glucocorticoid receptors with different glucocorticoid sensitivity. J Endocrinol 190:17–28

    Article  PubMed  CAS  Google Scholar 

  7. Stolte EH, de Mazon AF, Leon-Koosterziel KM, Jesiak M, Bury NR, Sturm A, Savelkoul HF, van Kemenade BM, Flik G (2008) Corticosteroid receptors involved in stress regulation in common carp, Cyprinus carpio. J Endocrinol 198:403–417

    Article  PubMed  CAS  Google Scholar 

  8. Kim MA, Kim DS, Sohn YC (2011) Characterization of two functional glucocorticoid receptors in the marine medaka Oryzias dancena. Gen Comp Endocrinol 171:341–349

    Article  PubMed  CAS  Google Scholar 

  9. Takeo J, Hata J, Segawa C, Toyohara H, Yamashita S (1996) Fish glucocorticoid receptor with splicing variants in the DNA binding domain. FEBS Lett 389:244–248

    Article  PubMed  CAS  Google Scholar 

  10. Bury NR, Sturm A, Le Rouzic P, Lethimonier C, Ducouret B, Guigen Y, Robinson-Rechavi M, Laudet V, Prunet P (2003) Evidence for two distinct functional glucocorticoid receptors in teleost fish. J Mol Endocrinol 31:141–156

    Article  PubMed  CAS  Google Scholar 

  11. Wittbrodt J, Shima A, Schartl M (2002) Medaka—a model organism from the far East. Nat Rev Genet 3:53–64

    Article  PubMed  CAS  Google Scholar 

  12. Padilla S, Cowden J, Hinton DE, Yuen B, Law S, Kullman SW, Johnson R, Hardman RC, Flynn K, Au DW (2009) Use of medaka in toxicity testing. Curr Protoc Toxicol. 2009:Chapter 1:Unit1.10. doi:10.1002/0471140856.tx0110s39

  13. Reuter U, Heinrich-Hirsch B, Hellwig J, Holzum B, Welsch F (2003) Evaluation of OECD screening tests 421 (reproduction/developmental toxicity screening test) and 422 (combined repeated dose toxicity study with the reproduction/developmental toxicity screening test). Regul Toxicol Pharmacol 38:17–26

    Article  PubMed  CAS  Google Scholar 

  14. Buschmann J (2013) The OECD guidelines for the testing of chemicals and pesticides. Methods Mol Biol 947:37–56

    Article  PubMed  CAS  Google Scholar 

  15. Van der Linden SC, Heringa MB, Man HY, Sonneveld E, Puijker LM, Brouwer A, Van der Burg B (2008) Detection of multiple hormonal activities in wastewater effluents and surface water, using a panel of steroid receptor CALUX bioassays. Environ Sci Technol 42:5814–5820

    Article  PubMed  Google Scholar 

  16. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292

    Article  PubMed  CAS  Google Scholar 

  17. Todo T, Ikeuchi T, Kobayashi T, Nagahama Y (1999) Fish androgen receptor: cDNA cloning, steroid activation of transcription in transfected mammalian cells, and tissue mRNA levels. Biochem Biophys Res Commun 254:378–383

    Article  PubMed  CAS  Google Scholar 

  18. Ikeuchi T, Todo T, Kobayashi T, Nagahama Y (1999) cDNA cloning of a novel androgen receptor subtype. J Biol Chem 274:25205–25209

    Article  PubMed  CAS  Google Scholar 

  19. Todo T, Ikeuchi T, Kobayashi T, Kajiura-Kobayashi H, Suzuki K, Yoshikuni M, Yamauchi K, Nagahama Y (2000) Characterization of a testicular 17α,20β-dihydroxy-4-pregnen-3-one (a spermiation-inducing steroid in fish) receptor from a teleost, Japanese eel (Anguilla japonica). FEBS Lett 465:12–17

    Article  PubMed  CAS  Google Scholar 

  20. Ikeuchi T, Todo T, Kobayashi T, Nagahama Y (2002) A novel progestogen receptor subtype in the Japanese eel, Anguilla japonica. FEBS Lett 510:77–82

    Article  PubMed  CAS  Google Scholar 

  21. Ikeuchi T, Kobayashi T, Todo T, Nagahama Y (2001) Transgenic cell lines which stably express progestogen receptors (PRs) α and β, and the PR-responsive reporter genes. Fish Physiol Biochem 28:151

    Article  Google Scholar 

  22. Butler DG (1973) Structure and function of the adrenal gland of fishes. Am Zool 13:839–879

    CAS  Google Scholar 

  23. Fukamachi S, Yada T, Mitani H (2005) Medaka receptors for somatolactin and growth hormone: phylogenetic paradox among fish growth hormone receptors. Genetics 171:1875–1883

    Article  PubMed  CAS  Google Scholar 

  24. Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625

    PubMed  CAS  Google Scholar 

  25. Kime DE, Scott AP, Canario AV (1992) In vitro biosynthesis of steroids, including 11-deoxycortisol and 5 alpha-pregnane-3 beta,7 alpha,17,20 beta-tetrol, by ovaries of the goldfish Carassius auratus during the stage of oocyte final maturation. Gen Comp Endocrinol 87:375–384

    Article  PubMed  CAS  Google Scholar 

  26. Close DA, Yun SS, McCormick SD, Wildbill AJ, Li W (2010) 11-Deoxycortisol is a corticosteroid hormone in the lamprey. Proc Natl Acad Sci USA 107:13942–13947

    Article  PubMed  CAS  Google Scholar 

  27. Patterson DJ, Kiracofe GH, Stevenson JS, Corah LR (1989) Control of the bovine estrous cycle with melengestrol acetate (MGA): a review. J Anim Sci 67:1895–1906

    PubMed  CAS  Google Scholar 

  28. Nagahama Y, Adachi S (1985) Identification of maturation-inducing steroid in a teleost, the amago salmon (Oncorhynchus rhodurus). Dev Biol 109:428–435

    Article  PubMed  CAS  Google Scholar 

  29. Trant JM, Thomas P (1988) Structure-activity relationships of steroids in inducing germinal vesicle breakdown of Atlantic croaker oocytes in vitro. Gen Comp Endocrinol 71:307–317

    Article  PubMed  CAS  Google Scholar 

  30. Baulieu EE (1991) The steroid hormone antagonist RU486. Mechanism at the cellular level and clinical applications. Endocrinol Metab Clin North Am 20:873–891

    PubMed  CAS  Google Scholar 

  31. Cadepond F, Ulmann A, Baulieu EE (1997) RU486 (mifepristone): mechanisms of action and clinical uses. Annu Rev Med 48:129–156

    Article  PubMed  CAS  Google Scholar 

  32. Sargis RM, Johnson DN, Choudhury RA, Brady MJ (2010) Environmental endocrine disruptors promote adipogenesis in the 3T3-L1 cell line through glucocorticoid receptor activation. Obesity 18:1283–1288

    Article  PubMed  CAS  Google Scholar 

  33. Gumy C, Chandsawangbhuwana C, Dzyakanchuk AA, Kratschmar DV, Baker ME, Odermatt A (2008) Dibutyltin disrupts glucocorticoid receptor function and impairs glucocorticoid-induced suppression of cytokine production. PLoS ONE 3:e3545

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshitaka Ikeuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, K., Okamoto, M., Suzuki, Y. et al. Transactivational property of chemicals via medaka glucocorticoid receptor 1b using a stable reporter gene assay. Fish Sci 79, 943–948 (2013). https://doi.org/10.1007/s12562-013-0679-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-013-0679-5

Keywords

Navigation