Skip to main content
Log in

Toxicity of the antifouling biocide Sea-Nine 211 to marine algae, crustacea, and a polychaete

  • Original Article
  • Environment
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

We evaluated the acute toxicity of the antifouling biocide Sea-Nine 211 to the algae Chaetoceros calcitrans, Dunaliella tertiolecta, Tetraselmis tetrathele, and Skeletonema costatum, the crustacea Tigriopus japonicus and Portunus trituberculatus, and the polychaete Perinereis nuntia. The algae, and especially the diatoms C. calcitrans and S. costatum, were sensitive to Sea-Nine 211 toxicity, with the average acute toxicity values being 0.32, 3.9, 1.6, 0.22, 1.6, 12, and 27 μg/l for C. calcitrans, D. tertiolecta, T. tetrathele, S. costatum, T. japonicus, P. trituberculatus, and P. nuntia, respectively. A sediment toxicity test for Sea-Nine 211 using the polychaete P. nuntia revealed demonstrated that the 14-day median lethal concentration was 110 μg/kg dry-wt sediment and that growth was the most sensitive indicator. The chronic toxicity values of Sea-Nine 211 for the diatoms C. calcitrans and S. costatum were within the range of reported Sea-Nine 211 concentrations in seawater in coastal Japan, and the toxicity values for P. nuntia were within the reported concentrations in sediment. Based on these results, Sea-Nine 211 may have toxic effects on some sensitive species residing in the coastal areas of Japan, but the ecological risk posed by Sea-Nine 211 would appear to be confined to a limited area of Japanese coastal waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okamura H, Mieno H (2006) Present status of antifouling systems in Japan: tributyltin substitutes in Japan. In: Konstantinou IK (ed) Antifouling paint biocides: The handbook of environmental chemistry. Springer, Berlin, pp 201–212

    Chapter  Google Scholar 

  2. Shade WD, Hurt SS, Jacobson AH, Reinert KH (1993) Ecological risk assessment of a novel marine antifoulant. In: Gorsuch JW et al (eds) Environmental toxicology and risk assessment, 2nd edn. American Society for Testing and Materials, Philadelphia, pp 381–408

    Chapter  Google Scholar 

  3. Thomas KV, McHugh M, Waldock M (2002) Antifouling paint booster biocides in UK coastal waters: inputs, occurrence and environmental fate. Sci Total Environ 293:117–127

    Article  PubMed  CAS  Google Scholar 

  4. Thomas K, McHugh M, Hilton M, Waldock M (2003) Increased persistence of antifouling paint biocides when associated with paint particles. Environ Pollut 123:153–161

    Article  PubMed  CAS  Google Scholar 

  5. Harino H, Kitano M, Mori Y, Mochida K, Kakuno A, Arima S (2005) Degradation of antifouling booster biocides in water. J Mar Biol Assoc UK 85:33–38

    Article  CAS  Google Scholar 

  6. Martínez K, Ferrer I, Hernando MD, Fernández-Alba AR, Marcé RM, Borrull F, Barceló D (2001) Occurrence of antifouling biocides in the Spanish Mediterranean marine environment. Environ Technol 22:543–552

    Article  PubMed  Google Scholar 

  7. Sakkas VA, Konstantinou I, Lambropoulou DA, Albanis TA (2002) Survey for the occurrence of antifouling paint booster biocides in the aquatic environment of Greece. Environ Sci Pollut Res 9:327–332

    Article  CAS  Google Scholar 

  8. Steen RJCA, Ariese F, Hattum B, Jacobsen J (2004) Monitoring and evaluation of the environmental dissipation of the marine antifoulant,5-dichloro-2-n-octyl-4 -isothiazolin-3-one (DCOIT) in a Danish Harbor. Chemosphere 57:513–521

    Article  PubMed  CAS  Google Scholar 

  9. Harino H, Mori Y, Yamaguchi Y, Shibata K, Senda T (2005) Monitoring of antifouling booster biocides in water and sediment from the port of Osaka, Japan. Arch Environ Contam Toxicol 48:303–310

    Article  PubMed  CAS  Google Scholar 

  10. Tsunemasa N, Hashimoto K, Yamamoka Y, Ueno H, Okamura H (2006) Contamination of an alternative antifoulant in coastal waters of Hiroshima Bay. J Environ Chem 16:201–211

    Article  CAS  Google Scholar 

  11. Harino H, Midorikawa S, Arai T, Ohji M, Cu ND, Miyazaki N (2006) Concentrations of booster biocides in sediment and clams from Vietnam. J Mar Biol Assoc UK 86:1163–1170

    Article  CAS  Google Scholar 

  12. Harino H, Ohji M, Wattayakorn G, Arai T, Rungsupa S, Miyazaki N (2006) Occurrence of antifouling biocides in sediment and green mussels from Thailand. Arch Environ Contam Toxicol 51:400–407

    Article  PubMed  CAS  Google Scholar 

  13. Harino H, Arai T, Ohji M, Ismail AB, Miyazaki N (2009) Contamination profiles of antifouling biocides in selected coastal regions of Malaysia. Arch Environ Contam Toxicol 56:468–478

    Article  PubMed  CAS  Google Scholar 

  14. Harino H, Arifin Z, Rumengan I, Arai T, Ohji M, Miyazaki N (2012) Distribution of antifouling biocides and perfluoroalkyl compounds in sediments from selected locations in Indonesian coastal waters. Arch Environ Contam Toxicol 63:13–21

    Article  PubMed  CAS  Google Scholar 

  15. Harino H, Yamamoto Y, Eguchi S, Kawai S, Kurokawa Y, Arai T, Ohji M, Okamura H, Miyazaki N (2007) Concentrations of antifouling biocides in sediment and mussel samples collected from Otsuchi bay, Japan. Arch Environ Contam Toxicol 52:179–188

    Article  PubMed  CAS  Google Scholar 

  16. Devilla R, Brown M, Donkin M, Tarran G, Aiken J, Readman J (2005) Impact of antifouling booster biocides on single microalgal species and on a natural marine phytoplankton community. Mar Ecol Prog Ser 286:1–12

    Article  CAS  Google Scholar 

  17. Myers JH, Gunthorpe L, Allinson G, Duda S (2006) Effects of antifouling biocides to the germination and growth of the marine macroalga, Hormosira banksii (Turner) Descaisne. Mar Pollut Bull 52:1048–1055

    Article  PubMed  CAS  Google Scholar 

  18. Arrhenius A, Backhaus T, Grönvall F, Junghans M, Scholze M, Blanck H (2006) Effects of three antifouling agents on algal communities and algal reproduction: mixture toxicity studies with TBT, Irgarol, and Sea-Nine. Arch Environ Contam Toxicol 50:335–345

    Article  PubMed  CAS  Google Scholar 

  19. Bellas J (2006) Comparative toxicity of alternative antifouling biocides on embryos and larvae of marine invertebrates. Sci Total Environ 367:573–585

    Article  PubMed  CAS  Google Scholar 

  20. Tsunemasa N, Okamura H (2011) Effects of organotin alternative antifoulants on oyster embryo. Arch Environ Contam Toxicol 61:128–134

    Article  PubMed  CAS  Google Scholar 

  21. Cima F, Ferrari G, Ferreira NGC, Rocha RJM, Serôdio J, Loureiro S, Calado R (2013) Preliminary evaluation of the toxic effects of the antifouling biocide Sea-Nine 211 in the soft coral Sarcophyton cf. glaucum (Octocorallia, Alcyonacea) based on PAM fluorometry and biomarkers. Mar Environ Res 83:16–22

    Article  PubMed  CAS  Google Scholar 

  22. Willemsen PR, Overbeke K, Suurmond A (1998) Repetitive testing of TBTO, Sea-Nine 211 and farnesol using Balanus amphitrite (Darwin) cypris larvae: variability in larval sensitivity. Biofouling 12:133–147

    Article  CAS  Google Scholar 

  23. Mochida K, Amano H, Onduka T, Kakuno A, Fujii K (2010) Toxicity of 4,5-dichloro-2-n-octyl-3(2H)-isothiazolone (Sea-Nine 211) to two marine teleostean fishes. Jpn J Environ Toxicol 13:105–116

    Google Scholar 

  24. Ito M, Mochida K, Ito K, Onduka T, Fujii K (2013) Induction of apoptosis in testis of the marine teleost mummichog Fundulus heteroclitus after in vivo exposure to the antifouling biocide 4,5-dichloro-2-n-octyl-3(2H)-isothiazolone (Sea-Nine 211). Chemosphere 90:1053–1060

    Article  PubMed  CAS  Google Scholar 

  25. Guillard RR, Ryther JH (1962) Studies of marine diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  PubMed  CAS  Google Scholar 

  26. Harino H (2004) Occurrence and degradation of representative TBT free-antifouling biocides in aquatic environment. Coast Mar Sci 29:28–39

    Google Scholar 

  27. Association American Public Health (AAPH), Association American Water Works (AAWW), Federation Water Environment (1998) Procedure for preparing reconstituted seawater. In: Clesceri LS et al (eds) Standard methods for the examination of water and wastewater, 20th edn. AAPH/AAWW/Federal Water Environment, Washington, DC, pp 8–11

  28. Onduka T, Mochida K, Harino H, Ito K, Kakuno A, Fujii K (2010) Toxicity of metal pyrithione photodegradation products to marine organisms with indirect evidence for their presence in seawater. Arch Environ Contam Toxicol 58:991–997

    Article  PubMed  CAS  Google Scholar 

  29. Mochida K, Amano H, Onduka T, Kakuno A, Fujii K (2011) Toxicity and metabolism of copper pyrithione and its degradation product, 2,2-dipyridyldisulfide in a marine polychaete. Chemosphere 82:390–397

    Article  PubMed  CAS  Google Scholar 

  30. Organization for Economic Cooperation and Development (OECD) (2000) Guidance document on aquatic toxicity testing of difficult substances and mixtures. Series on testing and assessment, no. 23. OECD, Paris

  31. Onduka T, Kakuno A, Kono K, Ito K, Mochida K, Fujii K (2012) Toxicity of chlorothalonil to marine organisms. Fish Sci 78:1301–1308

    Article  CAS  Google Scholar 

  32. Hamilton M, Russo R, Thurston R (1977) Trimmed Spearman–Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11:714–719

    Article  CAS  Google Scholar 

  33. Hall LW, Giddings JM, Solomon KR, Balcomb R (1999) An ecological risk assessment for the use of Irgarol 1051 as an algaecide for antifoulant paints. Crit Rev Toxicol 29:367–437

    PubMed  CAS  Google Scholar 

  34. Okamura H, Kitano S, Toyota S, Harino H, Thomas KV (2009) Ecotoxicity of the degradation products of triphenylborane pyridine (TPBP) antifouling agent. Chemosphere 74:1275–1278

    Article  PubMed  CAS  Google Scholar 

  35. Moore D, Dillon T, Suedel B (1991) Chronic toxicity of tributyltin to the marine polychaete worm, Neanthes arenaceodentata. Aquat Toxicol 21:181–198

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Ms. Miki Shoda and Ms. Chiaki Hiramoto (National Research Institute of Fisheries and Environment of Inland Sea) for their kind assistance. This study was supported in part by a grant-in-aid from the Fisheries Agency of the Ministry of Agriculture, Forestry and Fisheries, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimitsu Onduka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onduka, T., Ojima, D., Ito, M. et al. Toxicity of the antifouling biocide Sea-Nine 211 to marine algae, crustacea, and a polychaete. Fish Sci 79, 999–1006 (2013). https://doi.org/10.1007/s12562-013-0678-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-013-0678-6

Keywords

Navigation