Skip to main content

Advertisement

Log in

Species diversity of the marine diatom genus Skeletonema in Japanese brackish water areas

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

The genus Skeletonema includes phytoplankton species that are important primary producers in marine food chains. Brackish waters have been reported to be one of the important habitats of some species of Skeletonema. To elucidate the species diversity of Skeletonema in brackish waters, we investigated three Japanese brackish bodies of water: the coastal waters of Toyama Bay, a tidal area of the Chikugo River, and a constructed reservoir in Isahaya Bay. We used molecular analysis based on large subunit rDNA and fine morphological structure to identify species. Skeletonema costatum s.s. (sensu stricto) was isolated at salinities as low as 0.6, but Skeletonema dohrnii, Skeletonema subsalsum, and Skeletonema tropicum were not found at salinities below 11.0. S. costatum s.s. could survive transfer from a medium with a salinity of 15 to a salinity of 2, but S. dohrnii did not survive in the same experiment. Only S. costatum s.s. germinated from the sediment of a reservoir in which the salinity was 0.1–1.4; incubation conditions included temperatures of 10, 15, 20, 25, and 30 °C and salinities of 5 and 30. Skeletonema costatum s.s. was identified as the species most adaptable to low-level salinity variations throughout its lifecycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Odem EP (1975) Chapter 13 ecology of brackish water. In: Fundamentals of ecology, vol. 2 (in Japanese). Translated by Mishima Z Baifukan, Tokyo, pp 466–480

  2. Remane A, Schlieper C (1971) Biology of brackish water. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  3. Barnes RSK (1989) What, if anything, is a brackish-water fauna? Trans Royal Soc Edinb Earth Sci 80:235–240

    Article  Google Scholar 

  4. Attrill MJ, Rundle SD (2002) Ecotone or ecocline: ecological boundaries in estuaries. Estuar Coast Shelf Sci 55:929–936

    Article  Google Scholar 

  5. Kikuchi N, Kurihara Y (1988) Chapter 12 4 Tidal river. In: Ecology and ecotechnology in estuarine-coastal area. (in Japanese). Toukaidaigakushuppankai, Tokyo, pp 150–160

  6. Brand LE (1984) The salinity tolerance of 46 marine-phytoplankton isolates. Estuar Coast Shelf Sci 18:543–556

    Article  CAS  Google Scholar 

  7. Rijstenbil JW (1988) Selection of phytoplankton species in culture by gradual salinity changes. J Sea Res 22:291–300

    Article  Google Scholar 

  8. Sigee D (2005) Freshwater microbiology: biodiversity and dynamic interactions of microorganisms in the aquatic environment. Wiley, Chichester

    Google Scholar 

  9. Bagheri S, Mansor M, Makaremi M, Sabkara J, Maznah WOW, Mirzajani A, Khodaparast SH, Negarestan H, Ghandi A, Khalilpour A (2011) Fluctuations of phytoplankton community in the coastal waters of the Caspian Sea in 2006. Am J Appl Sci 8:1328–1336

    Article  Google Scholar 

  10. Bagherii S, Mavsor M, Turkoglu M, Makaremii M, Omar WMW, Negarestan H (2012) Phytoplankton species composition and abundance in the Southwestern Caspian Sea. Ekoloji 21(83):32–43. doi:10.5053/ekoloji.2012.834

    Article  Google Scholar 

  11. Cloern JE, Dufford R (2005) Phytoplankton community ecology: principles applied in San Francisco Bay. Mar Ecol Prog Ser 285:11–28

    Article  CAS  Google Scholar 

  12. Zingone A, Percopo I, Sims PA, Sarno D (2005) Diversity in the genus Skeletonema (Bacillariophyceae). I. A re-examination of the type material of S. costatum with the description of S. grevillei sp. nov. J Phycol 41:140–150

    Article  Google Scholar 

  13. Sarno D, Kooistra W, Medlin LK, Percopo I, Zingone A (2005) Diversity in the genus Skeletonema (Bacillariophyceae). II. An assessment of the taxonomy of S. costatum-like species with the description of four new species. J Phycol 41:151–176

    Article  Google Scholar 

  14. Sarno D, Kooistra W, Balzano S, Hargraves PE, Zingone A (2007) Diversity in the genus Skeletonema (Bacillariophyceae): III. Phylogenetic position and morphological variability of Skeletonema costatum and Skeletonema grevillei, with the description of Skeletonema ardens sp. nov. J Phycol 43:156–170

    Article  CAS  Google Scholar 

  15. Jung SW, Yun SM, Lee SD, Kim Y-O, Lee JH (2009) Morphological characteristics of four species in the genus Skeletonema in coastal waters of South Korea. Algae 24:195–203

    Article  Google Scholar 

  16. Castillo JA, Delcastillo MEM, Hernandez-Becerril DU (1995) Morphology and distribution of species of the diatom genus Skeletonema in a tropical coastal lagoon. Eur J Phycol 30:107–115

    Article  Google Scholar 

  17. Bergesch M, Garcia M, Odebrecht C (2009) Diversity and morphology of Skeletonema species in Southern Brazil, Southwestern Atlantic Ocean. J Phycol 45:1348–1352

    Article  Google Scholar 

  18. Gonzalez-Piana M, Ferrari G (2009) Skeletonema tropicum (Bacillariophyceae) present in Uruguayan southern coastal waters. Iheringia Serie Botanica 64:145–149

    Google Scholar 

  19. Kooistra W, Sarno D, Balzano S, Gu HF, Andersen RA, Zingone A (2008) Global diversity and biogeography of Skeletonema species (Bacillariophyta). Protist 159:7–193

    Article  Google Scholar 

  20. Balzano S, Sarno D, Kooistra WHCF (2011) Effects of salinity on the growth rate and morphology of ten Skeletonema strains. J Plankton Res 33:937–945

    Article  Google Scholar 

  21. Saravanan V, Godhe A (2010) Genetic heterogeneity and physiological variation among seasonally separated clones of Skeletonema marinoi (Bacillariophyceae) in the Gullmar Fjord, Sweden. Eur J Phycol 45:177–190

    Article  CAS  Google Scholar 

  22. Shikata T, Nagasoe S, Oh SJ, Matsubara T, Yamasaki Y, Shimasaki Y, Oshima Y, Honjo T (2008) Effects of down- and up-shocks from rapid changes of salinity on survival and growth of estuarine phytoplankters. J Fac Agric Kyushu Univ 53:81–87

    Google Scholar 

  23. Shikata T, Sakurada K, Jomoto Y, Onji M, Yoshida M, Ohwada K (2008) Effects of temperature, salinity and light irradiance on phytoplankton growth in the Yatsushiro Sea (in Japanese with English abstract). Nippon Suisan Gakkaishi 76:34–45

    Article  Google Scholar 

  24. Hasle GR, Evensen DL (1975) Brackish water and fresh water species of the diatom genus Skeletonema. Part I Skeletonema subsalsum. J Phycol 14:283–297

    Article  Google Scholar 

  25. Medlin LK, Kooistra WHCF (2010) Methods to estimate the diversity in the marine photosynthetic protist community with illustrations from case studies: a review. Diversity 2:973–1014. doi:10.3390/d2070973

    Article  CAS  Google Scholar 

  26. Paasche E (1975) The influence of salinity on the growth of some plankton diatoms from brackish water. Nord J Bot 22:209–215

    Google Scholar 

  27. Devercelli M, Devercelli M (2006) Phytoplankton of the Middle Parana River during an anomalous hydrological period: a morphological and functional approach. Hydrobiologia 563:465–478

    Article  Google Scholar 

  28. Yokoyama Y, Yoshitsugu S, Nakashima M, Hasegawa A, Nakashima M, Hasegawa A, Yamada K, Nakanishi H (2006) Estimation of transport and origin of suspended particles accumulated in the Isahaya Bay using diatom tracer method (in Japanese with English abstract). J Jpn Soc Water Environ 29:829–835

    Article  CAS  Google Scholar 

  29. Kasuya T (2011) Phytoplankters and benthoses of the detention pond originated from Isahaya-Bay land reclamation (in Japanese). Nagasaki Prefect Inst Environ Res Public Health Rep 57:74–76

    CAS  Google Scholar 

  30. Makarova IV, Proschkina-Lavrenko AI (1964) Diatomeae novae e Mari Caspico (in Russian). Nov Syst Plant Non Vasc 1:34–43

    Google Scholar 

  31. Hasle GR, Evensen DL (1976) Brackish water and freshwater species of the diatom genus Skeletonema. II. Skeletonema potamos comb. nov. J Phycol 12:73–82

    Google Scholar 

  32. Marshall H, Lacouture R, Buchanan C, Johnson J (2006) Phytoplankton assemblages associated with water quality and salinity regions in Chesapeake Bay, USA. Estuar Coast Shelf Sci 69:10–18

    Article  Google Scholar 

  33. Torgan LC, Becker V, Dos Santos CB (2009) Skeletonema potamos (Bacillariophyta) in Patos Lagoon, southern Brazil: taxonomy and distribution. Rev Peru Biol 16:93–96

    Google Scholar 

  34. Homma T (2005) Temporal and spatial variation of phytoplankton community in Lake Kasumigaura (in Japanese). Annu Rep Ibaraki Kasumigaura Environ Sci Center 1:85–92

    Google Scholar 

  35. Ogawa K (1990) Thalassiosiraceae collected from temporal and spatial variation of phytoplankton community in Lake Kasumigaura. Annual report of Ibaraki Kasumigaura Environmental Science on Lake Teganuma, the most hypertrophic lake in Japan (in Japanese). Diatom 5:59–68

    Google Scholar 

  36. Ishizaki S, Yoshuhara N, Yatsunami M (2004) Phytoplankton and benthos of the detention pond originated from Isahaya Bay land reclamation (in Japanese). Annu Rep Nagasaki Inst Public Health Environ Sci 49:89–91

    CAS  Google Scholar 

  37. Tsujimoto R (2012) Seasonal changes in the nutrient and phytoplankton biomass in the surface water of the innermost area of Toyama Bay (in Japanese with English abstract). Bull Coast Oceanogr 49:127–137

    Google Scholar 

  38. Imamura A, Ishimori S, Kawasaki K (1985) Chapter 25 Toyama Bay 2 physics. In: The Oceanographic Society of Japan and Coastal Oceanography Research Committee (eds). Coastal oceanography of Japanese Islands (in Japanese), Toukaishuppan, Tokyo, pp 990–1000

  39. NOWPAP CEARAC (2011) Integrated report on eutrophication assessment in selected sea areas in the NOWPAP region: evaluation of the NOWPAP common procedure. CEARAC, Toyama

  40. Toyama Prefectural Agricultural, Forestry and Fisheries Research Institute (2011) H22 investigative report on standardized structured fisheries environmental conservation (in Japanese). Toyama

  41. Kamata Y, Inoue N (1985) Chapter 21 Ariake Sound 1 Geology 2 Physics. In: The Oceanographic Society of Japan and Coastal Oceanography Research Committee (eds). Coastal oceanography of Japanese Islands (in Japanese), Toukaishuppann, Tokyo, pp 815–830

  42. Yokoyama K, Kodama M, Okamura K, Yamamoto K, Ikenoya N (2012) Temporal variations in light and phytoplankton growth in the turbidity maximum zone of the Chikugo River estuary (in Japanese with English abstract). J Jpn Soc Civil Eng Ser B1 (Hydraul Eng) 68:I_1585–I_1590

    Google Scholar 

  43. Nakayama H, Araki T, Nakamura S, Yokose T, Kawaguchi T, Hamano T (2011) Water quality of detention pond originated from Isahaya Bay land reclamation (2010). Annu Rep Nagasaki Inst Public Health Environ Sci (in Japanese) 56:56–60

    Google Scholar 

  44. Umehara A, Tsutsumi H, Takahashi T (2012) Blooming of Microcystis aeruginosa in the reservoir of the reclaimed land and discharge of microcystins to Isahaya Bay (Japan). Environ Sci Pollut Res Int 19:3257–3267. doi:10.1007/s11356-012-0835-y

    Article  PubMed  Google Scholar 

  45. Okaichi T, Nishio S, Imatomi Y (1983) Mass culture of marine phytoflagellates: an approach to new sources of biologically active compounds. In: Miyamoto J, Kearney PC (eds) IUPAC pesticide chemistry 2. Pergamon Press, New York, pp 141–144

    Google Scholar 

  46. Imai I, Ito K, Anraku M (1984) Extinction dilution method for enumeration of dormant cells of red tide organisms in marine sediments. Bull Plankton Soc Jpn 31:123–124

    Google Scholar 

  47. Nagumo T (1995) Simple and safe cleaning methods for diatom sample (in Japanese). Diatom 10:88

    Google Scholar 

  48. Orsini L, Sarno D, Procaccini D, Poletti R, Dahlmann J, Montresor M (2002) Toxic Pseudo-nitzschia multistriata (Bacillariophyceae) from the Gulf of Naples: morphology, toxin analysis and phylogenetic relationships with other Pseudo-nitzschia species. Eur J Phycol 37:247–257

    Article  Google Scholar 

  49. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. doi:10.1093/molbev/msr121

    Google Scholar 

  50. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  51. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  52. Yamada M, Katsuki E, Otsubo M, Kawaguchi M, Ichimi K, Kaeriyama H, Tada K, Paul H (2010) Species diversity of the genus Skeletonema (Bacillariophyceae) in the industrial harbor Dokai Bay, Japan. J Oceanogr 66:755–771

    Article  Google Scholar 

  53. Paasche E, Johansson S, Evense DL (1975) An effect of osmotic pressure on the valve morphology of the diatom Skeletonema subsalsum. Phycologia 14:205–211

    Article  Google Scholar 

  54. McQuoid MR (2005) Influence of salinity on seasonal germination of resting stages and composition of microplankton on the Swedish west coast. Mar Ecol Prog Ser 289:151–163

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Yukie Baba for her useful assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Machiko Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, M., Otsubo, M., Tsutsumi, Y. et al. Species diversity of the marine diatom genus Skeletonema in Japanese brackish water areas. Fish Sci 79, 923–934 (2013). https://doi.org/10.1007/s12562-013-0671-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-013-0671-0

Keywords

Navigation