Skip to main content

Advertisement

Log in

Kidney stone analysis techniques and the role of major and trace elements on their pathogenesis: a review

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Kidney stone disease is a polygenic and multifactorial disorder with a worldwide distribution, and its incidence and prevalence are increasing. Although significant progress has been made in recent years towards identifying the specific factors that contribute to the formation of kidney stone, many questions on the pathogenesis of kidney stones remain partially or completely unanswered. However, none of the proposed mechanisms specifically consider the role(s) of the trace elements and, consequently, the contribution of trace constituents to the pathogenesis of kidney stones remains unclear and under debate. The findings of some studies seem to support a role for some major and trace elements in the initiation of stone crystallization, including as a nucleus or nidus for the formation of the stone or simply as a contaminant of the stone structure. Thus, the analysis of kidney stones is an important component of investigations on nephrolithiasis in order to understand the role of trace constituents in the formation of kidney stones and to formulate future strategies for the treatment and prevention of stone formation and its recurrence. The aim of this review is to compare and evaluate the methods/procedures commonly used in the analysis of urinary calculi. We also highlight the role of major and trace elements in the pathogenesis of kidney stones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. This is a very recent publication on trace elements in urinary stones. Giannossi et al. (2013) analyzed a large set of kidney stone samples of different kinds and determined the trace and heavy elements either involved in the crystallization process or potentially toxic. They also compared the elemental contents in these stones and discussed their presence and role in the formation of kidney stones.

References

  • Abboud IA (2008) Mineralogy and chemistry of urinary stones: patients from North Jordan. Environ Geochem Health 30:445–463

    CAS  PubMed  Google Scholar 

  • Anke M, Schneider HJ (1973) Die bedeutung der spurenelemente in der pathogenese and Therapie der urolithiasis. III. Jenaer Harnsteinsymposium, pp 116–126.

  • Anzano J, Lasheras RJ (2009) Strategies for the identification of urinary calculus by laser induced breakdown spectroscopy. Talanta 79:352–360

    CAS  PubMed  Google Scholar 

  • Atakan IH, Kaplan M, Seren G, Aktoz T, Gül H, Inci O (2007) Serum, urinary and stone zinc, iron, magnesium and copper levels in idiopathic calcium oxalate stone patients. Int Urol Nephrol 39:351–356

    CAS  PubMed  Google Scholar 

  • Barbas C, Garca A, Saavedra L, Muros M (2002) Urinary analysis of nephrolithiasis markers. J Chromatogr B 781:433–455

    CAS  Google Scholar 

  • Barceloux DG (1993) Vanadium. J Toxicol Clin Toxicol 37:265–278

    Google Scholar 

  • Basavaraj DR, Biyani CS, Browning AJ, Cartledge JJ (2005) The role of urinary kidney stone inhibitors and promoters in the pathogenesis of calcium containing renal stones. Eur Assoc Urol Eur Board Urol (EAU-EBU) Update Ser 5:126–136

    Google Scholar 

  • Basiri A, Teheri M, Taheri F (2012) What is the state of the stone analysis technique in Urolithiasis? Urol J 9:445–454

    PubMed  Google Scholar 

  • Bazin D, Daudon M (2012) Pathological calcifications and selected examples at the medicine-solid-state physics interface. J Phy D: Appl Phys 45:383001–383010

    Google Scholar 

  • Bazin D, Daudon M, Chevallier P, Rouzière S, Elkaim E, Thiaudière D, Fayard B, Foy E, Albouy PA, André G, Matzen G, Veron E (2006) Ann Biol Clin 64:125

    CAS  Google Scholar 

  • Bazin D, Chevallier P, Matzen G, Jungers P, Daudon M (2007) Heavy elements in urinary stones. Urol Res 35:179–184

    CAS  PubMed  Google Scholar 

  • Bazin D, Carpentier X, Brocheriou I, Dorfmuller P, Aubert S, Chappard C, Thiaudière D, Reguer S, Waychunas G, Jungers P, Daudon M (2009) Revisiting the localisation of Zn2+ cations sorbed on pathological apatite calcifications made through XAS. Biochimie 91:1294–1300

    CAS  PubMed  Google Scholar 

  • Bazin D, Daudon M, Combes C, Rey C (2012) Characterization and some physicochemical aspects of pathological microcalcifications. Chem Rev 112:5092–5120

    CAS  PubMed  Google Scholar 

  • Beischer DE (1955) Analysis of renal calculi by infrared spectroscopy. J Urol 73:653–659

    CAS  PubMed  Google Scholar 

  • Berenyi M, Liptay G (1971) The use of thermal analysis in medical science with special reference to nephroliths. J Thermal Anal 3:437–443

    Google Scholar 

  • Berényi M, Frang D, Légrády J (1972) Theoretical and clinical importance of the differentiation between the two types of calcium oxalate hydrate. Int Urol Nephrol 4:341–345

    PubMed  Google Scholar 

  • Bhatt PA, Paul P (2008) Analysis of urinary stone constituents using powder X-ray diffraction and FT-IR. J Chem Sci 120:267–273

    CAS  Google Scholar 

  • Bihl G, Meyers A (2001) Recurrent renal stone disease-advances in pathogenesis and clinical management. Lancet 358:651–656

    CAS  PubMed  Google Scholar 

  • Bird ED, Thomas WC (1963) Effect of various metals on mineralization in vitro. Proc Soc Exp Biol Med 112:640–643

    CAS  PubMed  Google Scholar 

  • Blaschko SD, Miller J, Chi T, Flechner L, Fakra S, Kahn A, Kapahi P, Stoller ML (2013) Micro-composition of human urinary calculi using advanced imaging techniques. J Urol 189:726–734

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borsatti A (1991) Calcium oxalate nephrolithiasis: defective oxalate transport. Kidney Int 39:1283–1298

    CAS  PubMed  Google Scholar 

  • Carmona P, Bellanato J, Escolar E (1997) Infrared and Raman spectroscopy of urinary calculi: A review. Biospectroscopy 3:331–346

    CAS  Google Scholar 

  • Carpentier X, Daudon M, Traxer O, Jungers P, Mazouyes A, Matzen G, Veron E, Bazin D (2009) Relationship between the carbonate rate of carbapatite, morphological characteristics of calcium phosphate stones and etiology. Urology 73:968

    PubMed  Google Scholar 

  • Carpentier X, Bazin D, Combes C, Mazouyes A, Rouziere S, Albouy A, Foy E, Daudon M (2011) High Zn content of Randall’s plaque: A μ-X-ray fluorescence investigation. J Trace El Med Biol 25:160–165

    CAS  Google Scholar 

  • Charafi S, Mbarki M, Bauza AC, Prieto RM, Oussama A, Grases F (2010) A comparative study of two renal stone analysis methods. Int J Nephrol Urol 2:469–475

    Google Scholar 

  • Chaudhri MA, Watling J, Khan FA (2007) Spatial distribution of major and trace elements in bladder and kidney stones. J Radioanal Nucl Chem 271:713–720

    CAS  Google Scholar 

  • Cirillo M, Laurenzi M, Panarelli W, Stamler J (1994) Urinary sodium to potassium ratio and urinary stone disease. Kidney Int 46:1133–1139

    CAS  PubMed  Google Scholar 

  • Cohanim M, Yendt ER (1975) The effects of thiazides on serum and urinary zinc in patients with renal calculi. Johns Hopkins Med J 136:137–141

    CAS  PubMed  Google Scholar 

  • Curhan GC, Willet WC, Rimm EB, Stampfer MJ (1993) A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med 328:833–838

    CAS  PubMed  Google Scholar 

  • D'Ascenzo G, Curini R, de Angelis G, Cardarelli E, Magri A, Miano L (1983) Renal calculi analysis. Application of thermal analytical techniques. Thermochim Acta 62:149–169

    Google Scholar 

  • Daudon M (2013) Bazin D (2013) When the Synchrotron radiations highlight the Randall's plaques and kidney concretions. J Phys: Conference Series 425:022006

    Google Scholar 

  • Daudon M, Bader CA, Jungers (1993) Urinary calculi: Review of classification methods and correlations with etiology. Scan Microsc 7:1081–1106

    CAS  Google Scholar 

  • Daudon M, Junger P, Bazin D (2008) Peculiar Morphology of stones in Primary hyperoxaluria. New Eng J Med 359:100

    CAS  PubMed  Google Scholar 

  • Daudon M, Bazin D, Jungers P, Andre G, Cousson A, Chevallier P, Veron E, Matzen G (2009) Opportunities offered by Scanning electron microscopy, powder neutron diffraction in the study of whewellite kidney stones. J App Cryst 42:109

    CAS  Google Scholar 

  • Douglas DE, Tonks DB (1979) The qualitative analysis of renal calculi with the polarising microscope. Clin Biochem 12:182–183

    CAS  PubMed  Google Scholar 

  • Durak I, Kilic Z, Perk H, Sahin A, Yurtarslani Z, Yaşar A, Küpeli S, Akpoyraz M (1990) Iron, copper, cadmium, zinc and magnesium contents of urinary tract stones and hair from men with stone disease. Eur Urol 17:243–247

    CAS  PubMed  Google Scholar 

  • Durak I, Kilic Z, Sahin A, Akpoyraz M (1992) Analysis of calcium, iron, copper and zinc contents of nucleus and crust parts of urinary calculi. Urol Res 20:23–26

    CAS  PubMed  Google Scholar 

  • Durrant SF, Ward NI (2005) Recent biological and environmental applications of laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS). J Anal At Spectrom 20:821–829

    CAS  Google Scholar 

  • Ekong EB, Jaar BG, Weaver VM (2006) Lead-related nephrotoxicity: a review of the epidemiologic evidence. Kidney Int 70:2074–2084

    CAS  PubMed  Google Scholar 

  • Elliot JS, Ribeiro ME (1973) The urinary excretion of trace metals in patients with calcium oxalate urinary stone. Invest Urol 10:253–255

    CAS  PubMed  Google Scholar 

  • Escott-Stump S (2007) Nutritional review. In: Nutrition and diagnosis-related care. Wolters Kluwer, Lippincot Williams and Wilkins, Philadelphia, pp 842–862

  • Estepa L, Daudon M (1997) Contribution of Fourier transform infrared spectroscopy to the identification of urinary stones and kidney crystal deposits. Biospectrosc Biospectrosc 3:347–369

    CAS  Google Scholar 

  • Ettinger B, Pak CY, Citron JT, Thomas C, Adams-Huet B, Vangessel A (1997) Potassium magnesium citrate is an effective prophylaxis against recurrent calcium oxalate nephrolithiasis. J Urol 158:2069–2073

    CAS  PubMed  Google Scholar 

  • Eusebio E, Elliot JS (1967) Effect of trace metals on the crystallization of calcium oxalate. Invest Urol 4:431–435

    CAS  PubMed  Google Scholar 

  • Fang X, Ahmad SR, Mayo M, Iqbal S (2005) Elemental analysis of urinary calculi by laser induced plasma spectroscopy. Lasers Med Sci 20:132–137

    PubMed  Google Scholar 

  • Fazil Marickar YM, Lekshmi PR, Varma L, Koshy P (2009a) Elemental distribution analysis of urinary crystals. Urol Res 37:277–282

    CAS  PubMed  Google Scholar 

  • Fazil Marickar YM, Lekshmi PR, Varma L, Koshy P (2009b) EDAX versus FTIR in mixed stones. Urol 39:271–276

    Google Scholar 

  • Ferraro PM, Bonello M, Frigo AC, D'Addessi A, Sturniolo A, Gambaro G (2011) Cadmium exposure and kidney stone formation in the general population—an analysis of the National Health and Nutrition Examination Survey III data. J Endourol 25:875–880

    PubMed  Google Scholar 

  • Fraga CG (2005) Relevance, essentiality and toxicity of trace elements in human health. Mol Asp Med 26:235–244

    CAS  Google Scholar 

  • Francois B, Cahen R, Pascal B (1986) Inhibitors of urinary stone formation in 40 recurrent stone formers. Br J Urol 58:479–483

    CAS  PubMed  Google Scholar 

  • Fujieda M, Naruse K, Hamauzu T, Miyazaki E, Hayashi Y, Enomoto R, Lee E, Ohta K, Yamaguchi Y, Wakiguchi H, Enza H (2007) Effect of seleniumdeficient diet on tubular epithelium in normal rats. Pediatr Nephrol 22:192–201

    PubMed  Google Scholar 

  • Giannossi ML, Summa V, Mongelli G (2013) Trace element investigations in urinary stones: A preliminary pilot case in Basilicata (Southern Italy). J Trace Elem Med Biol 27:91–97

    CAS  PubMed  Google Scholar 

  • Girija EK, Kalkura SN, Sivaraman PB, Yokogawa Y (2007) Mineralogical composition of urinary calculi from southern India. J Sci Ind Res 66:632–639

    CAS  Google Scholar 

  • Gould N, Hallson PC, Kasidas GP, Samuell CT, Weir TB (1995) Rapid computer-assisted infrared analysis of urinary calculi using photoacoustic detection. Urol Res 23:63–69

    CAS  PubMed  Google Scholar 

  • Grant LD (2009) Lead and compounds. In: Lippmann M (ed) Environmental toxicants: human exposures and their health effects, 3rd edn. John Wiley & Sons, Hoboken, pp 757–810

    Google Scholar 

  • Gulley-Stahl HJ, Haas JA, Schmidt KA, Evan AP, Sommer AJ (2009) Attenuated total internal reflection Fourier transform infrared spectroscopy: a quantitative approach for kidney stone analysis. Appl Spectrosc 63:759–766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herring LC (1962) Observations on the analysis of ten thousand urinary calculi. J Urol 88:545–562

    CAS  PubMed  Google Scholar 

  • Hesse A, Sanders G (1988) Atlas of infrared spectra for the analysis of urinary concrements. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Hesse A, Schneider HJ, Hienzsch E (1972) Infra-red spectroscopy of urinary calculi. Dtsch Med Wochenschr 97:1694–1701

    CAS  PubMed  Google Scholar 

  • Hesse A, Schneider HJ, Berg W, Hienzsch E (1975) Uric acid dihydrate as urinary calculus component. Invest Urol 12:405–409

    CAS  PubMed  Google Scholar 

  • Hesse A, Berg W, Schneider HJ, Hienzsch E (1976) A contribution to the formation mechanism of calcium oxalate urinary calculi. II. In vitro experiments concerning the theory of the formation of whewellite and weddellite urinary calculi. Urol Res 4:157–160

    CAS  PubMed  Google Scholar 

  • Hesse A, Dietze HJ, Berg W, Hienzsch E (1977) Mass spectrometric trace element analysis of calcium oxalate uroliths. Eur Urol 3:359–361

    CAS  PubMed  Google Scholar 

  • Hesse A, Müller R, Schneider HJ, Taubert F (1978) Analytic experiments on the significance of the fluorine content of urinary calculi (German). Urologe A 17:207–210

    CAS  PubMed  Google Scholar 

  • Hesse A, Siener R et al (2013) Trace Elements in Urolithiasis. In: Talati JJ (ed) Urolithiasis. Springer, London, pp 227–230

    Google Scholar 

  • Hobarth K, Koeberl C, Hofbauer J (1993) Rare-earth elements in urinary calculi. Urol Res 21:261–264

    CAS  PubMed  Google Scholar 

  • Hofbauer J, Steffan I, Höbarth K, Vujicic G, Schwetz H, Reich G, Zechner O (1991) Trace elements and urinary stone formation: new aspects of the pathological mechanism of urinary stone formation. J Urol 145:93–96

    CAS  PubMed  Google Scholar 

  • Hofmann R, Hartung R, Schmidt-Kloiber H, Reichel E (1989) First clinical experience with a Q-switched Nd:YAG laser for urinary calculi. J Urol 141:275–279

    CAS  PubMed  Google Scholar 

  • Huel G, Fréry N, Takser L, Jouan M, Hellier G, Sahuquillo J, Giordanella JP (2002) Evolution of blood lead levels in urban French population (1979–1995). Rev Epidemiol Sante Publique 50:287–295

    CAS  PubMed  Google Scholar 

  • Hunt CD, Herbel JL, Nielsen FH (1997) Metabolic responses of postmenopausal women to supplemental dietary boron and aluminum during usual and low magnesium intake: boron, calcium, and magnesium absorption and retention and blood mineral concentrations. Am J Clin Nutr 65:803–813

    CAS  PubMed  Google Scholar 

  • Iwata K, Saito H, Moriyama M, Nakano A (1993) Renal tubular function after reduction of environmental cadmium exposure: a ten-year follow-up. Arch Environ Health 48:157–163

    CAS  PubMed  Google Scholar 

  • Järup L, Berglund M, Elinder CG, Nordberg G, Vahter M (1998) Health effects of cadmium exposure: a review of the literature and a risk estimate. Scand J Work Environ Health 24:1–51

    PubMed  Google Scholar 

  • Järup L, Hellström L, Alfvén T, Carlsson MD, Grubb A, Persson B, Pettersson C, Spång G, Schütz A, Elinder CG (2000) Low level exposure to cadmium and early kidney damage: the OSCAR study. Occup Environ Med 57:668–672

    PubMed Central  PubMed  Google Scholar 

  • Johansson G, Backman U, Danielson BG, Fellstrom B, Ljunghall S, Wikstrom B (1980) Biochemical and clinical effects of the prophylactic treatment of renal calcium stones with magnesium hydroxide. J Urol 124:770–774

    CAS  PubMed  Google Scholar 

  • Joost J, Tessadri R (1987) Trace element investigations in kidney stone patients. Eur Urol 13:264–270

    CAS  PubMed  Google Scholar 

  • Kajander EO, Ciftcioglu N (1998) Nanobacteria: An alternating mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc Natl Acad Sci USA 95:8274–8279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaloustian J, El-Moselphy TF, Portugal H (2003) Determination of calcium oxalate (mono and dehydrate) in mixture with magnesium ammonium phosphate or uric acid: The use of simultaneous thermal analysis in urinary calculi. Clin Chim Acta 334:117–129

    CAS  PubMed  Google Scholar 

  • Kasidas GP, Samuell CT, Weir TB (2004) Renal stone analysis: why and how? Ann Clin Biochem 41:91–97

    CAS  PubMed  Google Scholar 

  • Kjellström T, Evrin PE, Rahnster B (1977) Dose–response analysis of cadmiuminduced tubular proteinuria: a study of urinary beta2-microglobulin excretion among workers in a battery factory. Environ Res 13:303–317

    PubMed  Google Scholar 

  • Kohri K, Garside J, Blacklock NJ (1988) The role of magnesium in calcium oxalate urolithiasis. Br J Urol 61:107–112

    CAS  PubMed  Google Scholar 

  • Komleh K, Hada P, Pendse AK, Singh PP (1990) Zinc, copper and manganese in serum, urine and stones. Int Urol Nephrol 22:113–118

    CAS  PubMed  Google Scholar 

  • Koningsberger DC, Prins R (1988) X-ray absorption: principles, applications, techniques of EXAFS. SEXAFS and XANES, Wiley, New York

    Google Scholar 

  • Kumar M, Selvam R (2003) Supplementation of vitamine E and selenium prevents hyperoxaluria in experimental urolithic rats. J Nutr Biochem 14:306–313

    Google Scholar 

  • Kumar S, Gupta A, Shrivastava DK (1984) Role of zinc in nephrolithiasis. J Indian Med Assoc 82:235–237

    PubMed  Google Scholar 

  • Kumar N, Singh P, Kumar S (2006) Physical, X-ray diffraction and scanning electron microscopic studies of uroliths. Indian J Biochem Biophys 43:226–232

    CAS  PubMed  Google Scholar 

  • Küpeli S, Arikan N, Durak I, Sarica K, Akpoyraz M, Karalezli G (1993) Efficiency of extracorporeal shockwave lithotripsy on calcium-oxalate stones: role of copper, iron, magnesium and zinc concentrations on disintegration of the stones. Eur Urol 23:409–412

    PubMed  Google Scholar 

  • Kuta J, Jiri M, Daniela B, Rostislav C, Tamara K (2012) Urinary calculi-a typical source of information on mercury in human biomonitoring. Cent Eur J Chem 10:1475–1483

    CAS  Google Scholar 

  • Lahme S, Feil G, Strohmaier WL, Bichler KH, Stenzl A (2004) Renal tubular alteration by crystalluria in stone disease an experimental study by means of MDCK cells. Urol Int 72:244–251

    CAS  PubMed  Google Scholar 

  • Le Bail A, Daudon M, Bazin D (2013) A new compound in kidney stones? Powder X-ray diffraction study of calcium glycinate trihydrate. Acta Cryst C69:734–737

    Google Scholar 

  • Lee HP, Leong D, Heng CT (2012) Characterization of kidney stones using thermogravimetric analysis with electron dispersive spectroscopy. Urol Res 40:197–204

    CAS  PubMed  Google Scholar 

  • Lehmann CA, McClure GL, Smolens I (1988) Identification of renal calculi by computerized infrared spectroscopy. Clin Chim Acta 173:107–116

    CAS  PubMed  Google Scholar 

  • Lemann JJ, Pleuss JA, Gray RW, Hoffmann RG (1991) Potassium administration increases and potassium deprivative reduces urinary calcium excretion in healthy adults. Kidney Int 39:973–983

    PubMed  Google Scholar 

  • Levinson AA, Nosa M, Davidman M, Prien EL Sr, Prien EL Jr, Stevenson RG (1978) Trace elements in kidney stones from three areas in the United States. Invest Urol 15:270–274

    CAS  PubMed  Google Scholar 

  • Li C, Paris O, Siegel S, Roschger P, Paschalis EP, Klaushofer K, Fratzl P (2010) Strontium is incorporated into mineral crystals only in newly formed bone during strontium ranelate treatment. J Bone Miner Res 25:968–975

    CAS  PubMed  Google Scholar 

  • Lieu PT, Heiskala M, Peterson PA, Yang Y (2001) The roles of iron in health and disease. Mol Asp Med 22:1–87

    CAS  Google Scholar 

  • Lin JL, Huang PT (1994) Body lead stores and urate excretion in men with chronic renal disease. J Rheumatol 21:705–709

    CAS  PubMed  Google Scholar 

  • Lin SM, Tseng CL, Yang MH (1987) Determination of major, minor and trace elements in urinary stones by neutron activation analysis. Int J Rad Appl Instrum A 38:635–639

    CAS  PubMed  Google Scholar 

  • Lindberg J, Harvey J, Pak CY (1990) Effect of magnesium citrate and magnesium oxide on the crystallization of calcium salts in urine: changes produced by food-magnesium interaction. J Urol 143:248–251

    CAS  PubMed  Google Scholar 

  • Lyon TD, Aughey E, Scott R, Fell GS (1999) Cadmium concentrations in human kidney in the UK: 1978–1993. J Environ Monit 1:227–231

    CAS  PubMed  Google Scholar 

  • Marangella M, Bagnis C, Bruno M, Vitale C, Petrarulo M, Ramello A (2004) Crystallization inhibitors in the pathophysiology and treatment of nephrolithiasis. Urol Int 1:6–10

    Google Scholar 

  • Martini LA, Cuppari L, Cunha NA, Schor N, Heilberg (1998) Potassium and sodium intake and excretion in calcium stone forming patients. J Renal Nutr 8:127–131

    CAS  Google Scholar 

  • Massey L (2005) Magnesium therapy for nephrolithiasis. Magnes Res 18:123–126

    CAS  PubMed  Google Scholar 

  • Materazzi S, Curini R, D’Ascenzo G, Magri AD (1995) TG-FTIR coupled analysis applied to the studies in urolithiasis: characterization of human renal calculi. Thermochim Acta 264:75–93

    CAS  Google Scholar 

  • McCoy H, Kenney MA, Montgomery C, Irwin A, Williams L, Orrell R (1994) Relation of boron to the composition and mechanical properties of bone. Environ Health Perspect 102:49–53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer JL, Angino EE (1977) The role of trace metals in calcium urolithiasis. Invest Urol 14:347–350

    CAS  PubMed  Google Scholar 

  • Moe OW (2006) Kidney stones: pathophysiology and medical management. Lancet 367:333–344

    CAS  PubMed  Google Scholar 

  • Munoz JA, Valiente M (2005) Effects of trace metals on the inhibition of calcium oxalate crystallization. Urol Res 33:267–272

    CAS  PubMed  Google Scholar 

  • Nagy Z, Szabó E, Kelenhegyi M (1963) Spektralanalytische Untersuchung von Nierensteien auf metallische Spurenelemente. Z Urol 56:185–190

    Google Scholar 

  • Nalbandyan VB (2008) X-ray diffraction analysis of urinary calculi: need for heat treatment. Urol Res 36:247–249

    PubMed  Google Scholar 

  • New Hampshire Department of Environmental Services (2005) Copper: health information summary. Environmental Fact Sheet. ARD-Department of Environment and Heritage Protection (EHP)-9. Available at: http://des.nh.gov/organization/commissioner/pip/factsheets/ard/documents/ard-ehp-9.pdf

  • Nguyen Quy D, Daudon M (1997) Infrared and Raman spectra of calculi. Elsevier, Paris

    Google Scholar 

  • Nielsen FH (1994) Biochemical and physiologic consequences of boron deprivation in humans. Environ Health Perspect 102:59–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Norman RW (2001) Metabolic evaluation of stone disease patients: a practical approach. Curr Opin Urol 11:347–351

    CAS  PubMed  Google Scholar 

  • Oka T, Yoshioka T, Koide T, Takaha M, Sonoda T (1987) Role of magnesium in the growth of calcium oxalate monohydrate and calcium oxalate dihydrate crystals. Urol Int 42:89–93

    CAS  PubMed  Google Scholar 

  • Orlando MTD, Kuplich L, de Souza DO, Belich H, Depianti JB, Orlando CGP, Medeiros EF, da Cruz PCM, Martinez LG, Corrêa HPS, Ortiz R (2008) Study of calcium oxalate monohydrate of kidney stones by X-ray diffraction. Powder Diffraction Suppl 23:S59–S64

    CAS  Google Scholar 

  • Oswald I, Cavalu S, Maghiar TT, Osvat D (2011) Identification of the urinary stone composition upon extracorporeal shock wave lithotripsy. Romanian J Biophys 21:107–112

    CAS  Google Scholar 

  • Ouyang JM (2006) The application of X-ray diffraction in the study of urinary stones. Gang Pu Xue Yu Guang Pu Fen Xi 26:170–174

    CAS  Google Scholar 

  • Ozgurtas T, Yakut G, Gulec M, Serdar M, Kutluay T (2004) Role of urinary zinc and copper on calcium oxalate stone formation. Urol Int 72:233–236

    CAS  PubMed  Google Scholar 

  • Oztoprak BG, Gonzalez J, Yoo J, Gulecen T, Mutlu N, Russo RE, Gundogdu O, Demir A (2012) Analysis and classification of heterogeneous kidney stones using laser induced breakdown spectroscopy (LIBS). Appl Spectrosc 66:1353–1361

    CAS  PubMed  Google Scholar 

  • Pak CY (1998) Kidney stones. Lancet 351:1797–1801

    CAS  PubMed  Google Scholar 

  • Paluszkiewicz C, Galka M, Kwiatek W, Parczewski A, Walas S (1997) Renal stone studies using vibrational spectroscopy and trace element analysis. Biospectroscopy 3:403–407

    CAS  Google Scholar 

  • Parigger CG, Guan G, Hornkohl JO (2003) Measurement and analysis of OH emission spectra following laser-induced breakdown. Appl Opt 42:5986–5991

    CAS  PubMed  Google Scholar 

  • Parsons J (1953) Zinc phosphate identified as a constituent of urinary calculi. Science 118:217–218

    CAS  PubMed  Google Scholar 

  • Perk H, Serel TA, Kosar A, Deniz N, Sayin A (2002) Analysis of the trace element contents of inner nucleus and outer crust parts of urinary calculi. Urol Int 68:286–290

    CAS  PubMed  Google Scholar 

  • Prien EL, Frondel C (1947) Studies in urolithiasis: I. The composition of urinary calculi. J Urol 57:949–991

    CAS  PubMed  Google Scholar 

  • Randall A (1936) An hypothesis for the origin of renal calculus. N Engl J Med 214:234–242

    Google Scholar 

  • Rangnekar GV, Gaur MS (1993) Serum and urinary zinc levels in urolithiasis. Br J Urol 71:527–529

    CAS  PubMed  Google Scholar 

  • Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    CAS  PubMed  Google Scholar 

  • Rebentisch G (1993) Results of external quality assessment of analysis of urinary calculi by various methods. Scand J Clin Lab Invest Suppl 212:54–55

    CAS  PubMed  Google Scholar 

  • Robertson WG (1969) Measurement of ionized calcium in biological fluids. Clin Chim Acta 24:149–157

    CAS  PubMed  Google Scholar 

  • Rodgers AL, Scaillet, Wandt MA (1984) Urinary stone. In: Livingstone C, Ryall RL (eds) Proc 2nd Int Urinary Stone Conf. New York

  • Rodgers A, Barbour L, Pougnet B, Lombard C, Ryall R (1994) Urinary element concentrations in kidney stone formers and normal controls: the week-end effect. J Trace Elem Electrolytes Health Dis 8:87–91

    CAS  PubMed  Google Scholar 

  • Rodríguez-Miñón Cifuentes JL, Salvador E, Traba Villameytide ML (2006) Usual elements in kidney stones. Acta Urol Esp 30:57–62

    Google Scholar 

  • Rose G (1982) Stone analysis of thermogravimetric technique: In Urinary stones: Chemical and laboratory aspects. MTP Press, Lancaster, pp 77–85

    Google Scholar 

  • Rose GA, Woodfine C (1976) The thermogravimetric analysis of renal stones (in clinical practice). Br J Urol 48:403–412

    CAS  PubMed  Google Scholar 

  • Rubin R, Strayer DS (2008) Rubin's pathology: clinicopathologic foundations of medicine. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Sakly R, Chaouch A, El Hani A, Najjar MF (2003) Effects of intra peritoneally administered vitamine E and selenium on calcium oxalate renal stone formation: experimental study in rat. Ann Urol 37:47–50

    CAS  Google Scholar 

  • Samachson J, Scheck J, Spencer H (1966) Radiocalcium absorption at different times of day. Am J Clin Nutr 18:449–451

    CAS  PubMed  Google Scholar 

  • Schneider HJ, Berenyi M, Hesse A, Tscharnke J (1973) Comparative urinary stone analyses. Quantitative chemical, x-ray diffraction, infrared spectroscopy and thermo-analtytical procedures. Int Urol Nephrol 5:9–17

    CAS  PubMed  Google Scholar 

  • Schubert G (2006) Stone analysis. Urol Res 34:146–150

    PubMed  Google Scholar 

  • Schubert G, Brien G, Bick C (1983) Separate examinations on core and shell of urinary calculi. Urol Int 38:65–69

    CAS  PubMed  Google Scholar 

  • Scott R, East BW, Janczyszyn J, Boddy K, Yates AJ (1980) Concentration of some minor and trace elements in urinary tract stones: a preliminary study. Urol Res 8:167–169

    CAS  PubMed  Google Scholar 

  • Silva SFR, Matos DC, Silva SL, Daher EDF, Campos HH, Silva CAB (2010) Chemical and morphological analysis of kidney stones: a double-blind comparative study. Acta Cir Bras 25:444–448

    PubMed  Google Scholar 

  • Singh I (2008) Renal geology (quantitative renal stone analysis) by Fourier transform infrared spectroscopy. Int Urol Nephrol 40:595–602

    PubMed  Google Scholar 

  • Singh VK, Rai AK (2011) Prospects of laser induced breakdown spectroscopy for biomedical applications: A review. Lasers Med Sci 26:673–687

    PubMed  Google Scholar 

  • Singh VK, Rai AK, Rai PK, Jindal PK (2009) Cross-sectional study of kidney stones by laser-induced breakdown spectroscopy. Lasers Med Sci 24:749–759

    CAS  PubMed  Google Scholar 

  • Słojewski M (2011) Major and trace elements in lithogenesis. Central Eur J Urol 64:58–61

    Google Scholar 

  • Słojewski M, Czerny B, Safranow K, Jakubowska K, Olszewska M, Pawlik A, Gołąb A, Droździk M, Chlubek D, Sikorski A (2010) Microelements in stones, urine, and hair of stone formers: a new key to the puzzle of lithogenesis? Biol Trace Elem Res 137:301–316

    PubMed  Google Scholar 

  • Srivastava A, Swain KK, Ajith N, Wagh DN, Acharya R, Reddy AVR, Mete U (2012) Trace element study of kidney stones from subjects belonging to stone belt region of India. J Radioanal Nucl Chem 294:425–428

    CAS  Google Scholar 

  • Stepankova K, Novotny K, Vasinova Galiova M, Kanicky V, Kaiser J, Hahn DW (2013) Laser ablation methods for analysis of urinary calculi: comparison study based on calibration pellets. Spectrochim Acta Part B 81:43–49

    CAS  Google Scholar 

  • Stoller ML, Meng MV (2007) Urinary stone disease: The practical guide to medical and surgical management. Humana Press, Totowa,

    Google Scholar 

  • Strates BS (1966) Use of thermal gravimetry in the study of nephroliths. Experimentia 22:574–575

    CAS  Google Scholar 

  • Strübel G, Rzepka-Glinder V, Grobecker KH, Jarrar K (1990) Heavy metals in human urinary calculi. Fresenius J Anal Chem 337:316–319

    Google Scholar 

  • Sutor DJ (1968) Difficulties in the identification of components of mixed urinary calculi using the X-ray powder method. British J Urol 40:29–32

    CAS  Google Scholar 

  • Sutor DJ (1969) Growth studies of calcium oxalates in the presence of various ions and compounds. Br J Urol 41:171–178

    CAS  PubMed  Google Scholar 

  • Swaddiwudhipong W, Mahasakpan P, Limpatanachote P, Krintratun S (2011) An association between urinary cadmium and urinary stone disease in persons living in cadmium-contaminated villages in northwestern Thailand: A population study. Environ Res 111:579–583

    CAS  PubMed  Google Scholar 

  • Trinchieri A, Mandressi A, Luongo P, Longo G, Pisani E (1991) The influence of diet on urinary risk factors for stones in healthy subjects and idiopathic renal calcium stone formers. Br J Urol 67:230–236

    CAS  PubMed  Google Scholar 

  • Trinchieri A, Castelnuovo C, Lizzano R, Zanetti G (2005) Calcium stone disease: a multiform reality. Urol Res 33:194–198

    CAS  PubMed  Google Scholar 

  • Turgut M, Unal I, Berber A, Demir TA, Mutlu F, Aydar Y (2008) The concentration of Zn, Mg and Mn in calcium oxalate monohydrate stones appears to interfere with their fragility. Urol Res 36:31–38

    CAS  PubMed  Google Scholar 

  • Uldall A (1981) Analysis of urinary calculi; a quality control programme. Scand J Clin Lab Invest 41:1339–1345

    Google Scholar 

  • Verkoelen CF, Van Der Boom BG, Romijn JC (2000) Identification of hyaluronan as a crystal-binding molecule at the surface of migrating and proliferating MDCK cells. Kidney Int 58:1045–1054

    CAS  PubMed  Google Scholar 

  • Vezzoli G, Baragetti I, Zerbi S, Caumo A, Soldati L, Bellinzoni P, Centemero A, Rubinacci A, Moro G, Bianchi G (1998) Strontium absorption and excretion in normocalciuric subjects: relation to calcium metabolism. Clin Chem 44:586–590

    CAS  PubMed  Google Scholar 

  • Vezzoli G, Rubinacci A, Bianchin C (2003) Intestinal calcium absorption is associated with bone mass in stone-forming women with idiopathic hypercalciuria. Am J Kidney Dis 42:1177–1183

    PubMed  Google Scholar 

  • Volmer M, de Vries JCM, Goldschmidt HMJ (2001) Infrared analysis of urinary calculi by a single reflection accessory and a neural network interpretation algorithm. Clin Chem 47:1287–1296

    CAS  PubMed  Google Scholar 

  • Wandt MA, Rodgers AL (1988) Quantitative X-ray diffraction analysis of urinary calculi by use of the internal-standard method and reference intensity ratios. Clin Chem 34:289–293

    CAS  PubMed  Google Scholar 

  • Wandt MAE, Underhill G (1988) Covariance biplot analysis of trace element concentrations in urinary stones. Br J Urol 61:474–481

    CAS  PubMed  Google Scholar 

  • Welshman SG, McGeown MG (1972) A quantitative investigation of the effects on the growth of calcium oxalate crystals on potential inhibitors. Br J Urol 44:677–680

    CAS  PubMed  Google Scholar 

  • Wollaston WH (1810) On cystic oxide: a new species of urinary calculus. Philos Trans R Soc Lond 100:223–230

    Google Scholar 

  • Wright LF, Saylor RP, Cecere FA (1984) Occult lead intoxication in patients with gout and kidney disease. J Rheumatol 11:517–520

    CAS  PubMed  Google Scholar 

  • Yagisawa T, Hayashi T, Yoshida A, Kobayashi C, Okuda H, Ishikawa N, Toma H (2000) Comparison of metabolic risk factors in patients with recurrent urolithiasis stratified according to age and gender. Eur Urol 38:297–301

    CAS  PubMed  Google Scholar 

  • Yanagisawa H, Moridaira K, Wada O (2000) Zinc deficiency further increases the enhanced expression of endothelin-1 in glomeruli of the obstructed kidney. Kidney Int 58:575–586

    CAS  PubMed  Google Scholar 

  • Yano J, Yachandra VK (2009) X-ray absorption spectroscopy. Photosynth Res 102:241–254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zarasvandi A, Heidari M, Sadeghi M, Mousapoor E (2013) Major and trace element composition of urinary stones, Khuzestan province, southwest, Iran. J Geochem Explor 131:52–58

    CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Vivek K. Singh declares that he has no conflict of interest. Pradeep K. Rai declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.K., Rai, P.K. Kidney stone analysis techniques and the role of major and trace elements on their pathogenesis: a review. Biophys Rev 6, 291–310 (2014). https://doi.org/10.1007/s12551-014-0144-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-014-0144-4

Keywords

Navigation