Skip to main content

Advertisement

Log in

Plio-Pleistocene climatic change had a major impact on the assembly and disassembly processes of Iberian rodent communities

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

Comprehension of changes in community composition through multiple spatio-temporal scales is a prime challenge in ecology and palaeobiology. However, assembly, structuring and disassembly of biotic metacommunities in deep-time is insufficiently known. To address this, we used the extensively sampled Iberian Plio-Pleistocene fossil record of rodent faunas as our model system to explore how global climatic events may alter metacommunity structure. Through factor analysis, we found five sets of genera, called faunal components, which co-vary in proportional diversity over time. These faunal components had different spatio-temporal distributions throughout the Plio-Pleistocene, resulting in non-random changes in species assemblages, particularly in response to the development of the Pleistocene glaciations. Three successive metacommunities with distinctive taxonomic structures were identified as a consequence of the differential responses of their members to global climatic change: (1) Ruscinian subtropical faunas (5.3–3.4 Ma) dominated by a faunal component that can be considered as a Miocene legacy; (2) transition faunas during the Villafranchian–Biharian (3.4–0.8 Ma) with a mixture of different faunal components; and (3) final dominance of the temperate Toringian faunas (0.8–0.01 Ma) that would lead to the modern Iberian assemblage. The influence of the cooling global temperature drove the reorganisation of these rodent metacommunities. Selective extinction processes due to this large-scale environmental disturbance progressively eliminated the subtropical specialist species from the early Pliocene metacommunity. This disassembly process was accompanied by the organisation of a diversified metacommunity with an increased importance of biome generalist species, and finally followed by the assembly during the middle–late Pleistocene of a new set of species specialised in the novel environments developed as a consequence of the glaciations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abu Baker, M., & Patterson, B. D. (2010). Patterns in the local assembly of Egyptian rodent faunas: areography and species combinations Mammalian. Mammalian Biology-Zeitschrift für Säugetierkunde, 75, 510–522.

  • Agadjanian, A. K. (1976). Voles (Microtinae, Rodentia) of Pliocene location Uryv I, the Middle Don. Proceedings of the Zoological Institute, Academy of Sciences of the USSR, 66, 58–97.

    Google Scholar 

  • Allen, C. R., & Holling, C. S. (2002). Cross-scale structure and scale breaks in ecosystems and other complex systems. Ecosystems, 5, 315–318.

    Article  Google Scholar 

  • Alroy, J., Koch, P. L., & Zachos, J. C. (2000). Global climate change and North American mammalian evolution. Paleobiology, 26, 259–288.

    Article  Google Scholar 

  • Andrews, P., Lord, J. M., & Evans, E. M. N. (1979). Patterns of ecological diversity in fossil and modern mammalian faunas. Biological Journal of the Linnean Society, 11, 177–205.

    Article  Google Scholar 

  • Atmar, W., & Patterson, B. D. (1993). The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia, 96, 373–382.

    Article  Google Scholar 

  • Badgley, C., Barry, J. C., Morgan, M. E., Nelson, S. V., Behrensmeyer, A. K., Cerling, T. E., et al. (2008). Ecological changes in Miocene mammalian record show impact of prolonged climatic forcing. Proceedings of the National Academy of Sciences of the USA, 105, 12145–12149.

    Article  Google Scholar 

  • Badiola, A., Checa, L., Cuesta, M. A., Quer, R., Hooker, J. I., & Astibia, H. (2009). The role of new Iberian finds in understanding European Eocene mammalian palaeobiogeography. Geologica Acta, 7, 243–258.

    Article  Google Scholar 

  • Barnosky, A. D. (2001). Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. Journal of Vertebrate Paleontology, 21, 172–185.

    Article  Google Scholar 

  • Barnosky, A. D. (2005). Effects of quaternary climatic change on speciation in mammals. Journal of Mammalian Evolution, 12, 247–264.

    Article  Google Scholar 

  • Beaudrot, L., Struebig, M. J., Meijaard, E., Van Balen, S., Husson, S., Young, C. F., et al. (2013). Interspecific interactions between primates, birds, bats, and squirrels may affect community composition on Borneo. American Journal of Primatology, 75, 170–185.

    Article  Google Scholar 

  • Belmaker, J., & Jetz, W. (2012). Regional pools and environmental controls of vertebrate richness. The American Naturalist, 179, 512–523.

    Article  Google Scholar 

  • Benton, M. J. (2009). The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science, 323, 728–732.

    Article  Google Scholar 

  • Blois, J. L., & Hadly, E. A. (2009). Mammalian response to cenozoic climatic change. Annual Review of Earth and Planetary Sciences, 37, 181–208.

    Article  Google Scholar 

  • Blondel, J. (2009). The nature and origin of the vertebrate fauna. In J. Woodward (Ed.), The physical geography of the Mediterranean (pp. 139–163). Oxford: Oxford University Press.

    Google Scholar 

  • Bonhomme, F., Orth, A., Cucchi, T., Rajabi-Maham, H., Catalan, J., Boursot, P., et al. (2010). Genetic differentiation of the house mouse around the Mediterranean basin: matrilineal footprints of early and late colonization. Proceedings of the Royal Society of London B, 278, rspb20101228.

  • Bonis, L. de, Bouvrain, G., Geeraads, D., & Koufos, G. (1992). Multivariate study of late Cenozoic mammalian faunal compositions and paleoecology. Paleontologia i Evolució, 24, 25–93.

  • Brandler, O. V., & Lyapunova, E. A. (2009). Molecular phylogenies of the genus Marmota (Rodentia Sciuridae): comparative analysis. Ethology Ecology and Evolution, 21, 289–298.

    Article  Google Scholar 

  • Brown, J. H., Fox, B. J., & Kelt, D. A. (2000). Assembly rules: desert rodent communities are structured at scales from local to continental. The American Naturalist, 156, 314–321.

    Article  Google Scholar 

  • Brown, J. H., & Maurer, B. A. (1989). Macroecology: the division of food and space among species on continents. Science, 243, 1145–1150.

    Article  Google Scholar 

  • Cantalapiedra, J. L., Hernández Fernández, M., & Morales, J. (2014). Biogeographic history of ruminant faunas determines the phylogenetic structure of their assemblages at different scales. Ecography, 37, 1–9.

    Article  Google Scholar 

  • Casanovas-Vilar, I., García-Paredes, I., Alba, D. M., Hoek Ostende, L. W. van den, & Moyà-Solà, S. (2010). The European Far West: Miocene mammal isolation, diversity and turnover in the Iberian Peninsula. Journal of Biogeography, 37, 1079–1093.

  • Casanovas-Vilar, I., Hoek Ostende, L. W. van den, Furió, M., & Madern, P. A. (2014). The range and extent of the Vallesian Crisis (Late Miocene): new prospects based on the micromammal record from the Vallès-Penedès basin (Catalonia, Spain). Journal of Iberian Geology, 40, 29–48.

  • Chaline, J. (1987). Arvicolid data (Arvicolidae, Rodentia) and evolutionary concepts. In M. K. Hecht (Ed.), Evolutionary Biology (pp. 237–310). Berlin: Springer.

    Chapter  Google Scholar 

  • Chaline, J., Brunet-Lecomte, P., Montuire, S., Viriot, L., & Courant, F. (1999). Anatomy of the arvicoline radiation (Rodentia): palaeogeographical, palaeoecological history and evolutionary data. Annales Zoologici Fennici, 36, 239–267.

  • Chaline, J., & Marquet, J. C. (1976). Les conséquences stratigraphiques de la persistance en France dans le Würm ancien del rongeurs reliques Pliomys lenki et Allocricetus bursae (Rodentia). Comptes Rendus de l’Académie des Sciences de Paris D, 282, 1941–1942.

    Google Scholar 

  • Costeur, L., Legendre, S., & Escarguel, G. (2004). European large mammals palaeobiogeography and biodiversity during the Neogene. Palaeogeographic and climatic impacts. Revue de Paléobiologie, 9, 99–109.

    Google Scholar 

  • Costeur, L., Maridet, O., Montuire, S., & Legendre, S. (2013). Evidence of northern Turolian savannah-woodland from the Dorn-Dürkheim 1 fauna (Germany). In J. L. Franzen, & M. Pickford (eds) Dorn-Dürkheim 1, Germany: A highly diverse Turolian fauna from mid-latitude Europe. Palaeobiodiversity and Palaeoenvironments, 93(2), 259–275.

  • Cuenca-Bescós, G., Rofes, J., López-García, J. M., Blain, H.-A., De Marfá, R. J., Galindo-Pellicena, M. A., et al. (2010a). Biochronology of Spanish Quaternary small vertebrate faunas. Quaternary International, 212, 109–119.

    Article  Google Scholar 

  • Cuenca-Bescós, G., Straus, L. G., García-Pimienta, J. C., Morales, M. R., & López-García, J. M. (2010b). Late Quaternary small mammal turnover in the Cantabrian Region: The extinction of Pliomys lenki (Rodentia, Mammalia). Quaternary International, 212, 129–136.

    Article  Google Scholar 

  • Daams, R., & Meulen, A. J. van der (1984). Paleoenvironmental and paleoclimatic interpretation of micromammal faunal successions in the Upper Oligocene and Miocene of north central Spain. Paléobiologie Continentale, 14, 241–257.

  • Daams, R., Meulen, A. J. van der, Peláez-Campomanes, P., & Álvarez-Sierra, M. A. (1999). Trends in rodent assemblages from the Aragonian (early-middle Miocene) of the Calatayud-Daroca Basin, Aragon, Spain. In J. Agustí, L. Rook, & P. Andrews (Eds.), Hominoid evolution and climatic change in Europe (pp. 127–139). Cambridge: Cambridge University Press.

  • Dam, J. A. van, Abdul Aziz, H., Álvarez-Sierra, M. A., Hilgen, F. J., Hoek Ostende, L. W. van den, Lourens, L. J., et al. (2006). Long-period astronomical forcing of mammal turnover. Nature, 443, 687–691.

  • Dam, J. A. van, & Weltje, G. J. (1999). Reconstruction of the Late Miocene climate of Spain using rodent palaeocommunity successions: an application of end-member modelling. Palaeogeography, Palaeoclimatology, Palaeoecology, 151, 267–305.

  • Davis, E. B. (2005). Mammalian beta diversity in the Great Basin, western USA: palaeontological data suggest deep origin of modern macroecological structure. Global Ecology and Biogeography, 14, 479–490.

    Article  Google Scholar 

  • Daxner-Höck, G., & Höck, E. (2009). New data on Eomyidae and Gliridae (Rodentia, Mammalia) from the Late Miocene of Austria. Annalen des Naturhistorischen Museums in Wien, 111, 375–444.

    Google Scholar 

  • de la Sancha, N. U. (2014). Patterns of small mammal diversity in fragments of subtropical Interior Atlantic Forest in eastern Paraguay. Mammalia, 78, 437–449.

    Google Scholar 

  • Delcourt, H. R., & Delcourt, P. A. (1988). Quaternary landscape ecology: relevant scales in space and time. Landscape Ecology, 2, 23–44.

    Article  Google Scholar 

  • Diamond, J. M. (1975). The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biological Conservation, 7, 129–146.

    Article  Google Scholar 

  • Dobson, M. (1998). Mammal distributions in the western Mediterranean: the role of human intervention. Mammal Review, 28, 77–88.

    Article  Google Scholar 

  • Dodd, J. R., & Stanton, R. J. (1990). Paleoecology: concepts and applications. New York: Wiley.

    Google Scholar 

  • Domingo, L., Koch, P. L., Hernández Fernández, M., Fox, D. L., Domingo, M. S., & Alberdi, M. T. (2013). Late Neogene and early Quaternary paleoenvironmental and paleoclimatic conditions in southwestern Europe: isotopic analyses on mammalian taxa. PloS ONE, 8, e63739.

    Article  Google Scholar 

  • Domingo, M. S., Badgley, C., Azanza, B., DeMiguel, D., & Alberdi, M. T. (2014). Diversification of mammals from the Miocene of Spain. Paleobiology, 40, 197–221.

    Article  Google Scholar 

  • Emerson, B. C., & Gillespie, R. G. (2008). Phylogenetic analysis of community assembly and structure over space and time. Trends in Ecology and Evolution, 23, 619–630.

    Article  Google Scholar 

  • Ernest, S. K. M., Brown, J. H., Thibault, K. M., White, E. P., & Goheen, J. R. (2008). Zero sum, the niche, and metacommunities: long-term dynamics of community assembly. The American Naturalist, 172, E257–E269.

    Article  Google Scholar 

  • Eronen, J. T. (2007). Locality coverage, metacommunities and chronofauna: concepts that connect paleobiology to modern population biology. Vertebrata Palasiatica, 45, 137–144.

    Google Scholar 

  • Ervynck, A. (2002). Sedentism or urbanism? On the origin of the commensal black rat (Rattus rattus). In K. Dobney & T. P. O’Conner (Eds.), Bones and the man: studies in honour of Don Brothwell (pp. 95–109). Oxford: Oxbow.

    Google Scholar 

  • Escarguel, G., Fara, E., Brayard, A., & Legendre, S. (2011). Biodiversity is not (and never has been) a bed of roses! Comptes Rendus Biologies, 334, 351–359.

    Article  Google Scholar 

  • Escarguel, G., Legendre, S., & Sigé, B. (2008). Unearthing deep-time biodiversity changes: the Palaeogene mammalian metacommunity of the Quercy and Limagne area (Massif Central, France). Comptes Rendus Geoscience, 340, 602–614.

    Article  Google Scholar 

  • Feeley, K. (2003). Analysis of avian communities in Lake Guri. Venezuela, using multiple assembly rule models. Oecologia, 137, 104–113.

    Article  Google Scholar 

  • Fejfar, O., & Storch, G. (1990). Eine pliozäne (ober-ruscinische) Kleinsäugerfauna aus Gundersheim, Rheinhessen. 1. Nagetiere: Mammalia, Rodentia. Senckenbergiana lethaea, 71, 139–184.

    Google Scholar 

  • Figueirido, B., Janis, C. M., Pérez-Claros, J. A., De Renzi, M., & Palmqvist, P. (2012). Cenozoic climate change influences mammalian evolutionary dynamics. Proceedings of the National Academy of Sciences of the USA, 109, 722–727.

    Article  Google Scholar 

  • Frick, W. F., Hayes, J. P., & Heady, P. A. (2009). Nestedness of desert bat assemblages: species composition patterns in insular and terrestrial landscapes. Oecologia, 158, 687–697.

    Article  Google Scholar 

  • Furió, M., Casanovas-Vilar, I., & Hoek Ostende, L. W. van den (2011). Predictable structure of Miocene insectivore (Lipotyphla) faunas in Western Europe along a latitudinal gradient. Palaeogeography Palaeoclimatology Palaeoecology, 304, 219–229.

  • García-Alix, A., Minwer-Barakat, R., Martín-Suárez, E., Freudenthal, M., & Martín, J. M. (2008). Late Miocene-Early Pliocene climatic evolution of the Granada Basin (southern Spain) deduced from the paleoecology of the micromammal associations. Palaeogeography Palaeoclimatology Palaeoecology, 265, 214–225.

    Article  Google Scholar 

  • García-Alix, A., Minwer-Barakat, R., Martín-Suárez, E., & Freudenthal, M. (2009). Small mammal from the early Pleistocene of the Granada Basin, southern Spain). Quaternary Research, 72, 265–274.

    Article  Google Scholar 

  • García Yelo, B. A., Gómez Cano, A. R., Cantalapiedra, J. L., Alcalde, G. M., Sanisidro, O., Oliver, A., et al. (2014). Palaeoenvironmental analysis of the Aragonian (middle Miocene) mammalian faunas from the Madrid Basin based on body-size structure. Journal of Iberian Geology, 40, 129–140.

    Article  Google Scholar 

  • Gómez Cano, A. R., Hernández Fernández, M., & Álvarez-Sierra, M. A. (2011). Biogeographic provincialism in rodent faunas from the Iberoccitanian Region (southwestern Europe) generates severe diachrony within the Mammalian Neogene (MN) biochronologic scale during the Late Miocene. Palaeogeography Palaeoclimatology Palaeoecology, 307, 193–204.

  • Gómez Cano, A. R., Cantalapiedra, J., Mesa, A., Moreno Bofarull, A., & Hernandez Fernandez, M. (2013). Global climate changes drive ecological specialization of mammal faunas: trends in rodent assemblages from the Iberian Plio-Pleistocene. BMC Evolutionary Biology, 13, 94. doi:10.1186/1471-2148-13-94.

    Article  Google Scholar 

  • Gómez Cano, A. R., Cantalapiedra, J. L., Álvarez-Sierra, M. A., & Hernández Fernández, M. (2014). A macroecological glance at the structure of late Miocene rodent assemblages from Southwest Europe. Scientific Reports, 4, 6557.

    Article  Google Scholar 

  • Goodwin, H. T. (2008). Sciuridae. In C. Janis, G. Gunnell, & M. Uhen (Eds.), Evolution of Tertiary mammals of North America (Vol. 2, pp. 355–376). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Gotelli, N. J., & McCabe, D. J. (2002). Species co-occurrence: a meta-analysis of JM Diamond's assembly rules model. Ecology, 83, 2091–2096.

    Article  Google Scholar 

  • Greenacre, M. J., & Vrba, E. S. (1984). Graphical display and interpretation of antelope census data in African wildlife areas, using correspondence analysis. Ecology, 65, 984–997.

    Article  Google Scholar 

  • Heikinheimo, H., Fortelius, M., Eronen, J. T., & Mannila, H. (2007). Biogeography of European land mammals shows environmentally distinct and spatially coherent clusters. Journal of Biogeography, 34, 1053–1064.

    Article  Google Scholar 

  • Hernández Fernández, M. (2001). Análisis paleoclimático y paleoecológico de las sucesiones de mamíferos del Plio-Pleistoceno de la Península Ibérica. PhD Thesis, Universidad Complutense de Madrid, Madrid.

  • Hernández Fernández, M., & Peláez-Campomanes, P. (2003). Ecomorphological characterization of Murinae and hypsodont “Cricetidae” (rodentia) from the Iberian Plio-Pleistocene. Coloquios de Paleontología, 1, 237–251.

    Google Scholar 

  • Hernández Fernández, M., & Vrba, E. S. (2005). Macroevolutionary processes and biomic specialization: testing the resource-use hypothesis. Evolutionary Ecology, 19, 199–219.

    Article  Google Scholar 

  • Hernández Fernández, M., & Vrba, E. S. (2006). Plio-Pleistocene climatic change in the Turkana Basin (East Africa): evidence from large mammal faunas. Journal of Human Evolution, 50, 595–626.

    Article  Google Scholar 

  • Hernández Fernández, M., Azanza, B., & Álvarez-Sierra, M. A. (2004). Iberian Plio-Pleistocene biochronology: micromammalian evidence for MNs and ELMAs calibration in southwestern Europe. Journal of Quaternary Science, 19, 605–616.

    Article  Google Scholar 

  • Hernández Fernández, M., Álvarez-Sierra, M. A., & Peláez-Campomanes, P. (2007). Bioclimatic analysis of rodent palaeofaunas reveals severe climatic changes in Southwestern Europe during the Plio-Pleistocene. Palaeogeography Palaeoclimatology Palaeoecology, 251, 500–526.

  • HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M., & Mayfield, M. M. (2012). Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43, 227–248.

    Article  Google Scholar 

  • Holt, R. D. (1993). Ecology at the mesoscale: the influence of regional processes on local communities Species diversity in ecological communities. In R. Ricklefs & D. Schluter (Eds.), Species diversity in ecological communities (pp. 77–88). Chicago: University of Chicago Press.

    Google Scholar 

  • Horáček, I., Knitlová, M., Wagner, J., Kordos, L., & Nadachowski, A. (2013). Late Cenozoic history of the genus Micromys (Mammalia, Rodentia) in Central Europe. PloS ONE, 8, e62498.

    Article  Google Scholar 

  • Horváth, G., Herczeg, R., Tamási, K., & Sali, N. (2011). Nestedness of small mammal assemblages and role of indicator species in isolated marshland habitats. Natura Somogyiensis, 19, 281–283.

    Google Scholar 

  • Jackson, J. E. (2003). A user's guide to Principal Components. New York: Wiley-Interscience.

    Google Scholar 

  • Jaeger, J.-J. (1994). The evolution of biodiversity among the Southwest European Neogene rodent (Mammalia, Rodentia) communities: pattern and process of diversification and extinction. Palaeogeography Palaeoclimatology Palaeoecology, 111, 305–336.

    Article  Google Scholar 

  • Janossy, D. (1986). Pleistocene vertebrate faunas of Hungary. Budapest: Akadémiai Kiadó.

    Google Scholar 

  • Jiménez-Moreno, G., & Suc, J.-P. (2007). Middle Miocene latitudinal climatic gradient in Western Europe: evidence from pollen records. Palaeogeography Palaeoclimatology Palaeoecology, 253, 208–225.

    Article  Google Scholar 

  • Kelt, D. A. (1999). On the relative importance of history and ecology in structuring communities of desert small animals. Ecography, 22, 123–137.

    Article  Google Scholar 

  • Kohn, R., Schimek, M. G., & Smith, M. (2000). Spline and kernel regression for dependent data. In M. G. Schimekk (Ed.), Smoothing and Regression: approaches, computation and application (pp. 135–158). New York: Wiley.

    Google Scholar 

  • Kolfschoten, T. van, & Meulen, A. J. van der (1986). Villanyian and Biharian mammal faunas from The Netherlands. Memoire della Societa Geologica Italiana, 31, 191–200.

  • Kowalski, K. (2001). Pleistocene rodents of Europe. Folia Quaternaria, 72, 3–389.

    Google Scholar 

  • Kruckenhauser, L., Pinsker, W., Haring, E., & Arnold, W. (1999). Marmot phylogeny revisited: molecular evidence for a diphyletic origin of sociality. Journal of Zoological Systematics and Evolutionary Research, 37, 49–56.

    Article  Google Scholar 

  • Lawton, J. H. (1999). Are there general laws in ecology? Oikos, 84, 177–192.

    Article  Google Scholar 

  • Leaper, R., Dunstan, P. K., Foster, S. D., Barrett, N. S., & Edgar, G. J. (2013). Do communities exist? Complex patterns of overlapping marine species distributions. Ecology, 95, 2016–2025.

    Article  Google Scholar 

  • Leavitt, D. J., & Fitzgerald, L. A. (2013). Disassembly of a dune-dwelling lizard community due to landscape fragmentation. Ecosphere, 4, art97.

    Article  Google Scholar 

  • Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., et al. (2004). The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters, 7, 601–613.

    Article  Google Scholar 

  • Leibold, M. A., & Mikkelson, G. M. (2002). Coherence, species turnover, and boundary clumping: elements of meta-community structure. Oikos, 97, 237–250.

    Article  Google Scholar 

  • Levin, S. A. (1992). The problem of pattern and scale in ecology. Ecology, 73, 1943–1967.

    Article  Google Scholar 

  • Lomolino, M. (1996). Investigating causality of nestedness of insular communities: selective immigrations or extinctions? Journal of Biogeography, 23, 699–703.

    Article  Google Scholar 

  • Lomolino, M. V., & Perault, D. R. (2000). Assembly and disassembly of mammal communities in a fragmented temperate rain forest. Ecology, 81, 1517–1532.

    Google Scholar 

  • Lundelius, E. L., Downs, T., Lindsay, E. H., Semken, H. A., Zakrzewski, R. J., Churcher, C. S., et al. (1987). The North American Quaternary sequence. In M. O. Woodburne (Ed.), Cenozoic mammals of North America: geochronology and biostratigraphy (pp. 211–235). Berkeley: University of California Press.

    Google Scholar 

  • Maridet, O., Escarguel, G., Costeur, L., Mein, P., Hugueney, M., & Legendre, S. (2007). Small mammal (rodents and lagomorphs) European biogeography from the Late Oligocene to the mid Pliocene. Global Ecology and Biogeography, 16, 529–544.

    Article  Google Scholar 

  • Maridet, O., Costeur, L., & Legendre, S. (2013). European Neogene rodent communities: explaining family-level replacements through a spatiotemporal approach. Historical Biology, 25, 655–677.

    Article  Google Scholar 

  • Martin, R. A., & Peláez-Campomanes, P. (2014). Diversity dynamics of the Late Cenozoic rodent community from south-western Kansas: the influence of historical processes on community structure. Journal of Quaternary Science, 29, 221–231.

    Article  Google Scholar 

  • Maul, L. C., & Markova, A. K. (2007). Similarity and regional differences in Quaternary arvicolid evolution in Central and Eastern Europe. Quaternary International, 160, 81–99.

    Article  Google Scholar 

  • Maurer, B. A. (1999). Untangling ecological complexity: the macroscopic perspective. Chicago: University of Chicago Press.

    Google Scholar 

  • McGill, B. J., Hadly, E. A., & Maurer, B. A. (2005). Community inertia of Quatrnary small mammal assemblages in North America. Proceedings of the National Academy of Sciences of the USA, 102, 16701–16706.

    Article  Google Scholar 

  • Mein, P. (1970). Les sciuroptères (Mammalia, Rodentia) néogènes d’Europe occidentale. Geobios, 3, 7–77.

    Article  Google Scholar 

  • Meulen, A. J. van der (1974). On Microtus (Allophaiomys) deucalion (Kretzoi, 1969), (Arvicolidae, Rodentia), from the upper Villányian (Lower Pleistocene) of Villány-5, S. Hungary. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Ser. B, 77, 259–266.

  • Meulen, A. J. van der, & Bruijn, H. de (1982). The mammals from the Lower Miocene of Aliveri (Island of Evia, Greece). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Ser. B, 85, 485–524.

  • Meulen, A. J. van der, & Daams, R. (1992). Evolution of Early-Middle Miocene rodent faunas in relation to long-term palaeoenvironmental changes. Palaeogeography Palaeoclimatology Palaeoecology, 93, 227–253.

  • Meulen, A. J. van der, Peláez-Campomanes, P., & Levin, S. A. (2005). Age structure, residents, and transients of Miocene rodent communities. The American Naturalist, 165, E108–E125.

  • Mikkelson, G. M. (1993). How do food webs fall apart? A study of changes in trophic structure during relaxation on habitat fragments. Oikos, 67, 539–547.

    Article  Google Scholar 

  • Millien-Parra, V., & Loreau, M. (2000). Community composition and size structure of murid rodents in relation to the biogeography of the Japanese archipelago. Ecography, 23, 413–423.

    Article  Google Scholar 

  • Minwer-Barakat, R., García-Alix, A., Martín Suárez, E., Freudenthal, M., & Viseras, C. (2012). Micromammal biostratigraphy of the Upper Miocene to lowest Pleistocene continental deposits of the Guadix basin, southern Spain. Lethaia, 45, 594–614.

    Article  Google Scholar 

  • Mitchell-Jones, A. J., Amori, G., Bogdanowicz, W., Krystufek, B., Reijnders, P. J. H., Spitzenberger, F., et al. (1999). The Atlas of European Mammals. London: Academic.

    Google Scholar 

  • Morales Muñiz, A., Cereijo Pecharroman, M. A., Hernández Carrasquilla, F., & Liesau von Lettow-Vorbeck, C. (1995). Of mice and sparrows: commensal faunas from the Iberian Iron Age in the Duero Valley (Central Spain). International Journal of Osteoarchaeology, 5, 127–138.

  • Morris, D. W. (2005). On the roles of time, space and habitat in a boreal small mammal assemblage: predictably stochastic assembly. Oikos, 109, 223–238.

    Article  Google Scholar 

  • Nadachowski, A. (1990). Lower Pleistocene rodents of Poland: faunal succession and biostratigraphy. Quartärpaläontologie, 8, 215–223.

    Google Scholar 

  • Nadachowski, A. (1998). Faunal succession of small mammal assemblages at the Pliocene-Pleistocene boundary in Poland. Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO, 60, 281–286.

  • Nieto, M., & Rodríguez, J. (2003). Inferencia paleoecológica en mamíferos cenozoicos: limitaciones metodológicas. Coloquios de Paleontología, 1, 459–474.

    Google Scholar 

  • Okie, J. G., & Brown, J. H. (2009). Niches, body sizes, and the disassembly of mammal communities on the Sunda Shelf islands. Proceedings of the National Academy of Sciences of the USA, 106, 19679–19684.

    Article  Google Scholar 

  • Olson, E. C. (1952). The evolution of a Permian vertebrate chronofauna. Evolution, 6, 181–196.

    Article  Google Scholar 

  • Patterson, B. D. (1999). Contingency and determinism in mammalian biogeography: the role of history. Journal of Mammalogy, 80, 345–360.

    Article  Google Scholar 

  • Patterson, B. D., & Atmar, W. (1986). Nested subsets and the structure of insular mammalian faunas and archipelagos Biological. Biological Journal of the Linnean Society, 28, 65–82.

    Article  Google Scholar 

  • Patterson, B. D., & Atmar, W. (2000). Analyzing species composition in fragments. Bonner Zoologische Monographien, 46, 9–24.

    Google Scholar 

  • Pavoine, S., & Bonsall, M. B. (2011). Measuring biodiversity to explain community assembly: a unified approach. Biological Reviews, 86, 792–812.

    Article  Google Scholar 

  • Peinado Lorca, M., & Rivas-Martínez, S. (1987). La vegetación de España. Alcalá de Henares: Servicio de Publicaciones de la Universidad de Alcalá de Henares.

    Google Scholar 

  • Peláez-Campomanes, P. (1993). Micromamíferos del Paleogeno Continental Español: Sistemática, Biocronología y Paleoecología. PhD thesis, Universidad Complutense de Madrid, Madrid.

  • Pennington, R. T., Richardson, J. E., & Lavin, M. (2006). Insights into the historical construction of species-rich biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure. New Phytologist, 172, 605–616.

    Article  Google Scholar 

  • Pevzner, M., Tesakov, A., & Vangengeim, E. (1998). The position of the Tizdar locality (Taman Peninsula, Russia) in the magnetochronological scale. Paludicola, 2, 95–97.

  • Pokines, J. T. (1998). A late survival of Pliomys lenki (Heller, 1930) in Cantabrian Spain. Mammalia, 62, 143–145.

    Google Scholar 

  • Potts, R., & Behrensmeyer, A. K. (1992). Late Cenozoic terrestrial ecosystems. In A. K. Behrensmeyer, J. D. Damuth, W. A. DiMichele, R. Potts, H.-D. Sues, & S. L. Wing (Eds.), Terrestrial ecosystems through time (pp. 419–541). Chicago: University of Chicago Press.

    Google Scholar 

  • Presley, S. J., Cisneros, L. M., Patterson, B. D., & Willig, M. R. (2012). Vertebrate metacommunity structure along an extensive elevational gradient in the tropics: a comparison of bats, rodents and birds. Global Ecology and Biogeography, 21, 968–976.

    Article  Google Scholar 

  • Presley, S. J., Higgins, C. L., & Willig, M. R. (2010). A comprehensive framework for the evaluation of metacommunity structure. Oikos, 119, 908–917.

    Article  Google Scholar 

  • Preston, F. W. (1960). Time and space and the variation of species. Ecology, 41, 611–627.

    Article  Google Scholar 

  • Prieto, G., Angelone, C., Casanovas-Vilar, I., Gross, M., Hír, J., Hoek Ostende, L. W. van den, et al. (2014). The small mammals from Gratkorn: an overview. In M. Böhme, M. Gross, J. Prieto (eds) The Sarmatian vertebrate locality Gratkorn, Styrian Basin. Palaeobiodiversity and Palaeoenvironments, 94(1), 135–162.

  • Purroy, F. J., & Varela, J. M. (2003). Guía de los mamíferos de España: Península, Baleares y Canarias. Barcelona: Lynx.

    Google Scholar 

  • R Development Core team. (2014). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Razafindratsima, O. H., Mehtani, S., & Dunham, A. E. (2013). Extinctions, traits and phylogenetic community structure: insights from primate assemblages in Madagascar. Ecography, 36, 47–56.

    Article  Google Scholar 

  • Reed, K. E. (1998). Using large mammal communities to examine ecological and taxonomic structure and predict vegetation in extant and extinct assemblages. Paleobiology, 24, 384–408.

    Google Scholar 

  • Rekovets, L., & Nadachowski, A. (1995). Pleistocene voles (Arvicolidae) of the Ukraine. Paleontologia i Evolució, 28–29, 145–245.

    Google Scholar 

  • Ricklefs, R. E. (2004). A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7, 1–15.

    Article  Google Scholar 

  • Ricklefs, R. E. (2008). Disintegration of the ecological community. The American Naturalist, 172, 741–750.

    Article  Google Scholar 

  • Ricklefs, R. E., & Schluter, D. (1993). Species diversity in ecological communities: historical and geographical perspectives. Chicago: University of Chicago Press.

    Google Scholar 

  • Riddle, B. R. (1998). The historical assembly of continental biotas: late Quaternary range-shifting, areas of endemism, and bio-geographic structure in the North American mammal fauna. Ecography, 21, 437–442.

    Article  Google Scholar 

  • Rodríguez, J. (2006). Structural continuity and multiple alternative stable States in Middle Pleistocene European mammalian communities. Palaeogeography Palaeoclimatology Palaeoecology, 239, 355–373.

    Article  Google Scholar 

  • Rodríguez-Gironés, M. A., & Santamaría, L. (2006). A new algorithm to calculate the nestedness temperature of presence-absence matrices. Journal of Biogeography, 33, 924–935.

    Article  Google Scholar 

  • Rull, V. (2012). Community ecology: diversity and dynamics over time. Community Ecology, 13, 102–116.

    Article  Google Scholar 

  • Savage, D. E., & Russell, D. E. (1983). Mammalian paleofaunas of the world. Reading: Addison-Wesley.

  • Sesé, C. (2006). Los roedores y lagomorfos del Neógeno de España. Estudios Geológicos, 62, 429–480.

    Article  Google Scholar 

  • Simberloff, D. (2004). Community ecology: is it time to move on? The American Naturalist, 163, 787–799.

    Article  Google Scholar 

  • Smith, F. A., Lyons, S. K., Ernest, S. K. M., & Brown, J. H. (2008). Macroecology: more than the division of food and space among species on continents. Progress in Physical Geography, 32, 115–138.

    Article  Google Scholar 

  • Stegen, J. C., & Swenson, N. G. (2009). Functional trait assembly through ecological and evolutionary time. Theoretical Ecology, 2, 239–250.

    Article  Google Scholar 

  • Steppan, S. J., Akhverdyan, M. R., Lyapunova, E. A., Fraser, D. G., Vorontsov, N. N., Hoffmann, R. S., et al. (1999). Molecular phylogeny of the marmots (Rodentia: Sciuridae): tests of evolutionary and biogeographic hypotheses. Systematic Biology, 48, 715–734.

    Article  Google Scholar 

  • Stevens, R. D., & Tello, J. S. (2012). Do desert rodents form metacommunities? Journal of Mammalogy, 93, 1029–1041.

    Article  Google Scholar 

  • Tesakov, A. S. (1998). Voles of the Tegelen fauna. Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO, 60, 71–134.

    Google Scholar 

  • Tesakov, A. S., Lebedev, V. S., Bannikova, A. A., & Abramson, N. I. (2010). Clethrionomys Tilesius, 1850 is the valid generic name for red-backed voles and Myodes Pallas, 1811 is a junior synonym of Lemmus Link, 1795. Russian Journal of Theriology, 9, 83–86.

    Google Scholar 

  • Thibault, K. M., & Brown, J. H. (2008). Impact of an extreme climatic event on community assembly. Proceedings of the National Academy of Sciences of the USA, 105, 3410–3415.

    Article  Google Scholar 

  • Ulrich, W., Almeida-Neto, M., & Gotelli, N. (2009). A consumer’s guide to nestedness analysis. Oikos, 118, 3–17.

    Article  Google Scholar 

  • Valenzuela-Lamas, S., Baylac, M., Cucchi, T., & Vigne, J. D. (2011). House mouse dispersal in Iron Age Spain: a geometric morphometrics appraisal. Biological Journal of the Linnean Society, 102, 483–497.

    Article  Google Scholar 

  • Vrba, E. S. (1985). Environment and evolution: alternative causes of the temporal distribution of evolutionary events. South African Journal of Science, 81, 229–236.

    Google Scholar 

  • Vrba, E. S. (1987). Ecology in relation to speciation rates: some case histories of miocene-recent mammal clades. Evolutionary Ecology, 1, 283–300.

    Article  Google Scholar 

  • Vrba, E. S. (1992). Mammals as a key to evolutionary theory. Journal of Mammalogy, 73, 1–28.

    Article  Google Scholar 

  • Weerd, A. van de, & Daams, R. (1978). Quantitative composition of rodent faunas in the Spanish Neogene and paleoecological implications. I & II. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Ser. B, 81, 448–473.

  • Wiens, J. A. (1989). Spatial scaling in ecology. Functional Ecology, 3, 385–397.

    Article  Google Scholar 

  • Wilson, D. E., & Reeder, D. M. (2005). Mammal species of the world: a taxonomic and geographic reference. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Wilson, D. S. (1992). Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology, 73, 1984–2000.

    Article  Google Scholar 

  • Wilson, J. B. (1999). Guilds, functional types and ecological groups. Oikos, 86, 507–522.

    Article  Google Scholar 

  • Zachos, J. C., Dickens, G. R., & Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451, 279–283.

    Article  Google Scholar 

  • Zavaleta, E., Pasari, J., Moore, J., Hernandez, D., Suttle, K. B., & Wilmers, C. C. (2009). Ecosystem responses to community disassembly. Annals of the New York Academy of Sciences, 1162, 311–333.

    Article  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Albert J. van der Meulen, leader in the field of mammalian palaeoecology and friend. Albert’s works on Neogene rodent communities have been an inspiring force for anyone interested in community ecology and the influence of climatic changes on the evolution of mammal faunas. We want to thank the editors of this issue in his honour for their initiative and for inviting us to participate. We also acknowledge the insightful suggestions and comments on the manuscript made by Catherine Badgley (University of Michigan), Belén Luna (University of Castilla-La Mancha) and an anonymous reviewer, which greatly helped to improve this paper. This is a contribution by the Palaeoclimatology, Macroecology and Macroevolution of Vertebrates research team (www.pmmv.com.es) of the Complutense University of Madrid as a part of the Research Group UCM 910607 on Evolution of Cenozoic Mammals and Continental Palaeoenvironments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Hernández Fernández.

Additional information

This article is a contribution to the special issue “Old worlds, new ideas. A tribute to Albert van der Meulen”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández Fernández, M., Cantalapiedra, J.L. & Gómez Cano, A.R. Plio-Pleistocene climatic change had a major impact on the assembly and disassembly processes of Iberian rodent communities. Palaeobio Palaeoenv 95, 387–404 (2015). https://doi.org/10.1007/s12549-015-0196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-015-0196-x

Keywords

Navigation