Skip to main content
Log in

Solid-State Nanopore for Molecular Detection

  • Review
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Solid-state nanopore (SSNP) or synthetic nanopore using semiconductor materials have established themselves as a single molecule bio-detection platform. Although biological nanopore with fixed dimension has been successfully utilized for many sensing applications, SSNP has unique characteristics of distinctly potent geometries and relaxation of modification. The most common method of molecular detection is to measure the temporal variations of the ionic current in the pore. In this review, the principles of the SSNP and the improvement of device performance for the molecular detection platform are discussed elaborately. Moreover, different experimental aspects of the SSNP are discussed in detail. For instance, the enhancement of spatial resolution, modification of temporal resolution with the difficulties of its analyte-detection, as well as reduction of the electrical noise for the improvement of device sensing functionalities, all are addressed in designated chapters for better conception. In addition, the typical and updated applications of SSNP including DNA, protein and virus are briefly discussed. Finally, this article offers the context needed to comprehend current research trends and promote molecular sensing through synthetic nanopores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen, Y., & Pepin, A. (2001). Nanofabrication: Conventional and nonconventional methods. Electrophoresis, 22(2), 187–207.

    Article  Google Scholar 

  2. Zhu, L., Xu, Y., Ali, I., Liu, L., Wu, H., Lu, Z., & Liu, Q. (2018). Solid-state nanopore single-molecule sensing of DNAzyme cleavage reaction assisted with nucleic acid nanostructure. ACS Applied Materials and Interfaces, 10(31), 26555–26565.

    Article  Google Scholar 

  3. Dong, G., Hou, J., Wang, J., Zhang, Y., Chen, V., & Liu, J. (2016). Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. Journal of Membrane Science, 520, 860–868.

    Article  Google Scholar 

  4. Caglar, M., Silkina, I., Brown, B. T., Thorneywork, A. L., Burton, O. J., Babenko, V., Gilbert, S. M., Zettl, A., Hofmann, S., & Keyser, U. F. (2019). Tunable anion-selective transport through monolayer graphene and hexagonal boron nitride. ACS Nano, 14(3), 2729–2738.

    Article  Google Scholar 

  5. Liu, Y., Zhang, Z., & Wang, S. (2020). Carbon nanopore-tailored reverse osmotic water desalination. ACS ES&T Water, 1(1), 34–47.

    Article  Google Scholar 

  6. Cao, L., Wen, Q., Feng, Y., Ji, D., Li, H., Li, N., Jiang, L., & Guo, W. (2018). On the origin of ion selectivity in ultrathin nanopores: Insights for membrane-scale osmotic energy conversion. Advanced Functional Materials, 28(39), 1804189.

    Article  Google Scholar 

  7. Feng, J., Graf, M., Liu, K., Ovchinnikov, D., Dumcenco, D., Heiranian, M., Nandigana, V., Aluru, N. R., Kis, A., & Radenovic, A. (2016). Single-layer MoS2 nanopores as nanopower generators. Nature, 536(7615), 197–200.

    Article  Google Scholar 

  8. Lin, Y., Ying, Y. L., & Long, Y. T. (2018). Nanopore confinement for electrochemical sensing at the single-molecule level. Current Opinion in Electrochemistry, 7, 172–178.

    Article  Google Scholar 

  9. Wanunu, M., Dadosh, T., Ray, V., Jin, J., McReynolds, L., & Drndić, M. (2010). Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nature nanotechnology, 5(11), 807–814.

    Article  Google Scholar 

  10. Akeson, M., Branton, D., Kasianowicz, J. J., Brandin, E., & Deamer, D. W. (1999). Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophysical Journal, 77(6), 3227–3233.

    Article  Google Scholar 

  11. Lee, M. H., Kumar, A., Park, K. B., Cho, S. Y., Kim, H. M., Lim, M. C., Kim, Y. R., & Kim, K. B. (2014). A low-noise solid-state nanopore platform based on a highly insulating substrate. Scientific Reports, 4(1), 1–7.

    Article  Google Scholar 

  12. Yilmaz, D., Kaya, D., Kececi, K., & Dinler, A. (2021). Role of nanopore geometry in particle resolution by resistive-pulse sensing. ChemistrySelect, 6(1), 59–67.

    Article  Google Scholar 

  13. Ivanov, A. P., Instuli, E., McGilvery, C. M., Baldwin, G., McComb, D. W., Albrecht, T., & Edel, J. B. (2011). DNA tunneling detector embedded in a nanopore. Nano Letters, 11(1), 279–285.

    Article  Google Scholar 

  14. Gilboa, T., & Meller, A. (2015). Optical sensing and analyte manipulation in solid-state nanopores. The Analyst, 140(14), 4733–4747.

    Article  Google Scholar 

  15. Crosland-Taylor, P. J. (1953). A device for counting small particles suspended in a fluid through a tube. Nature, 171(4340), 37–38.

    Article  Google Scholar 

  16. Muthukumar, M., Plesa, C., & Dekker, C. (2015). Single-molecule sensing with nanopores. Physics Today, 68(8), 40.

    Article  Google Scholar 

  17. Kasianowicz, J. J., Brandin, E., Branton, D., & Deamer, D. W. (1996). Characterization of individual polynucleotide molecules using a membrane channel. Proceedings of the National Academy of Sciences, 93(24), 13770–13773.

    Article  Google Scholar 

  18. Faller, M., Niederweis, M., & Schulz, G. E. (2004). The structure of a mycobacterial outer-membrane channel. Science, 303(5661), 1189–1192.

    Article  Google Scholar 

  19. Rhee, M., & Burns, M. A. (2007). Nanopore sequencing technology: Nanopore preparations. TRENDS in Biotechnology, 25(4), 174–181.

    Article  Google Scholar 

  20. Liu, K., Pan, C., Kuhn, A., Nievergelt, A. P., Fantner, G. E., Milenkovic, O., & Radenovic, A. (2019). Detecting topological variations of DNA at single-molecule level. Nature Communications, 10(1), 1–9.

    Google Scholar 

  21. Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W., & Dekker, C. (2003). Fabrication of solid-state nanopores with single-nanometre precision. Nature Materials, 2(8), 537–540.

    Article  Google Scholar 

  22. Hall, A. R., Scott, A., Rotem, D., Mehta, K. K., Bayley, H., & Dekker, C. (2010). Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores. Nature Nanotechnology, 5(12), 874–877.

    Article  Google Scholar 

  23. Zhu, L., Zhang, Z., & Liu, Q. (2020). Deformation-mediated translocation of DNA origami nanoplates through a narrow solid-state nanopore. Analytical Chemistry, 92(19), 13238–13245.

    Article  Google Scholar 

  24. Steinbock, L. J., Krishnan, S., Bulushev, R. D., Borgeaud, S., Blokesch, M., Feletti, L., & Radenovic, A. (2014). Probing the size of proteins with glass nanopores. Nanoscale, 6(23), 14380–14387.

    Article  Google Scholar 

  25. Yusko, E. C., Bruhn, B. R., Eggenberger, O. M., Houghtaling, J., Rollings, R. C., Walsh, N. C., Nandivada, S., Pindrus, M., Hall, A. R., Sept, D., & Li, J. (2017). Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nature Nanotechnology, 12(4), 360–367.

    Article  Google Scholar 

  26. Houghtaling, J., Ying, C., Eggenberger, O. M., Fennouri, A., Nandivada, S., Acharjee, M., Li, J., Hall, A. R., & Mayer, M. (2019). Estimation of shape, volume, and dipole moment of individual proteins freely transiting a synthetic nanopore. ACS Nano, 13(5), 5231–5242.

    Article  Google Scholar 

  27. Wei, R., Gatterdam, V., Wieneke, R., Tampé, R., & Rant, U. (2012). Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nature Nanotechnology, 7(4), 257–263.

    Article  Google Scholar 

  28. Storm, A. J., Chen, J. H., Zandbergen, H. W., & Dekker, C. (2005). Translocation of double-strand DNA through a silicon oxide nanopore. Physical Review E, 71(5), 051903.

    Article  Google Scholar 

  29. Yanagi, I., Hamamura, H., Akahori, R., & Takeda, K. I. (2018). Two-step breakdown of a SiN membrane for nanopore fabrication: Formation of thin portion and penetration. Scientific Reports, 8(1), 1–13.

    Article  Google Scholar 

  30. Yanagi, I., Ishida, T., Fujisaki, K., & Takeda, K. I. (2015). Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process. Scientific Reports, 5(1), 1–13.

    Article  Google Scholar 

  31. Waduge, P., Hu, R., Bandarkar, P., Yamazaki, H., Cressiot, B., Zhao, Q., Whitford, P. C., & Wanunu, M. (2017). Nanopore-based measurements of protein size, fluctuations, and conformational changes. ACS Nano, 11(6), 5706–5716.

    Article  Google Scholar 

  32. Ying, Y. L., Zhang, J., Gao, R., & Long, Y. T. (2013). Nanopore-based sequencing and detection of nucleic acids. Angewandte Chemie International Edition, 52(50), 13154–13161.

    Article  Google Scholar 

  33. Feng, J., Liu, K., Bulushev, R. D., Khlybov, S., Dumcenco, D., Kis, A., & Radenovic, A. (2015). Identification of single nucleotides in MoS2 nanopores. Nature Nanotechnology, 10(12), 1070–1076.

    Article  Google Scholar 

  34. Rusk, N. (2015). MinION takes center stage. Nature Methods, 12(1), 12–12.

    Article  Google Scholar 

  35. Dekker, C. (2007). Solid-state nanopores. Nature Nanotechnology, 2, 209–215.

    Article  Google Scholar 

  36. Venta, K., Shemer, G., Puster, M., Rodriguez-Manzo, J. A., Balan, A., Rosenstein, J. K., Shepard, K., & Drndic, M. (2013). Differentiation of short, single-stranded DNA homopolymers in solid-state nanopores. ACS Nano, 7(5), 4629–4636.

    Article  Google Scholar 

  37. Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M., & Shepard, K. L. (2012). Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nature Methods, 9(5), 487–492.

    Article  Google Scholar 

  38. Weber, M., Julbe, A., Ayral, A., Miele, P. & Bechelany, M. (2018). Atomic layer deposition for membranes: Basics, challenges, and opportunities. Chemistry of Materials, 30(21), 7368–7390.

  39. Balan, A., Chien, C. C., Engelke, R., & Drndić, M. (2015). Suspended solid-state membranes on glass chips with sub 1-pF capacitance for biomolecule sensing applications. Scientific Reports, 5(1), 1–8.

    Article  Google Scholar 

  40. Chen, P., Mitsui, T., Farmer, D. B., Golovchenko, J., Gordon, R. G., & Branton, D. (2004). Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Letters, 4(7), 1333–1337.

    Article  Google Scholar 

  41. Larkin, J., Henley, R., Bell, D. C., Cohen-Karni, T., Rosenstein, J. K., & Wanunu, M. (2013). Slow DNA transport through nanopores in hafnium oxide membranes. ACS Nano, 7(11), 10121–10128.

    Article  Google Scholar 

  42. Banerjee, S., Wilson, J., Shim, J., Shankla, M., Corbin, E. A., Aksimentiev, A., & Bashir, R. (2015). Slowing DNA transport using graphene–DNA interactions. Advanced Functional Materials, 25(6), 936–946.

    Article  Google Scholar 

  43. Waduge, P., Bilgin, I., Larkin, J., Henley, R. Y., Goodfellow, K., Graham, A. C., Bell, D. C., Vamivakas, N., Kar, S., & Wanunu, M. (2015). Direct and scalable deposition of atomically thin low-noise MoS2 membranes on apertures. ACS Nano, 9(7), 7352–7359.

    Article  Google Scholar 

  44. Liu, S., Lu, B., Zhao, Q., Li, J., Gao, T., Chen, Y., Zhang, Y., Liu, Z., Fan, Z., & Yang, F. (2013). Boron nitride nanopores: Highly sensitive DNA single-molecule detectors. Advanced Materials, 25(33), 4549–4554.

    Article  Google Scholar 

  45. Zhou, Z., Hu, Y., Wang, H., Xu, Z., Wang, W., Bai, X., Shan, X., & Lu, X. (2013). DNA translocation through hydrophilic nanopore in hexagonal boron nitride. Scientific Reports, 3(1), 1–5.

    Article  Google Scholar 

  46. Danda, G., Masih Das, P., Chou, Y. C., Mlack, J. T., Parkin, W. M., Naylor, C. H., Fujisawa, K., Zhang, T., Fulton, L. B., Terrones, M., & Johnson, A. T. (2017). Monolayer WS2 nanopores for DNA translocation with light-adjustable sizes. ACS Nano, 11(2), 1937–1945.

    Article  Google Scholar 

  47. Li, J., Stein, D., McMullan, C., Branton, D., Aziz, M. J., & Golovchenko, J. A. (2001). Ion-beam sculpting at nanometre length scales. Nature, 412(6843), 166–169.

    Article  Google Scholar 

  48. Rigo, E., Dong, Z., Park, J. H., Kennedy, E., Hokmabadi, M., Almonte-Garcia, L., Ding, L., Aluru, N., & Timp, G. (2019). Measurements of the size and correlations between ions using an electrolytic point contact. Nature Communications, 10(1), 1–13.

    Article  Google Scholar 

  49. Kwok, H., Briggs, K., & Tabard-Cossa, V. (2014). Nanopore fabrication by controlled dielectric breakdown. PLoS ONE, 9(3), e92880.

    Article  Google Scholar 

  50. Yanagi, I., Akahori, R., Hatano, T., & Takeda, K. I. (2014). Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection. Scientific Reports, 4(1), 1–7.

    Article  Google Scholar 

  51. Waugh, M., Briggs, K., Gunn, D., Gibeault, M., King, S., Ingram, Q., Jimenez, A. M., Berryman, S., Lomovtsev, D., Andrzejewski, L., & Tabard-Cossa, V. (2020). Solid-state nanopore fabrication by automated controlled breakdown. Nature Protocols, 15(1), 122–143.

    Article  Google Scholar 

  52. Harrell, C. C., Choi, Y., Horne, L. P., Baker, L. A., Siwy, Z. S., & Martin, C. R. (2006). Resistive-pulse DNA detection with a conical nanopore sensor. Langmuir, 22(25), 10837–10843.

    Article  Google Scholar 

  53. Yamazaki, H., Hu, R., Zhao, Q., & Wanunu, M. (2018). Photothermally assisted thinning of silicon nitride membranes for ultrathin asymmetric nanopores. ACS Nano, 12(12), 12472–12481.

    Article  Google Scholar 

  54. Sriram, G., Patil, P., Bhat, M. P., Hegde, R. M., Ajeya, K. V., Udachyan, I., Bhavya, M. B., Gatti, M. G., Uthappa, U. T., Neelgund, G. M., & Jung, H. Y. (2016). Current trends in nanoporous anodized alumina platforms for biosensing applications. Journal of Nanomaterials, 2016, 1–14.

    Article  Google Scholar 

  55. De Vreede, L. J., Muniz, M. S., van den Berg, A., & Eijkel, J. C. (2016). Nanopore fabrication in silicon oxynitride membranes by heating Au-particles. Journal of Micromechanics and Microengineering, 26(3), 037001.

    Article  Google Scholar 

  56. Deng, T., Chen, J., Li, M., Wang, Y., Zhao, C., Zhang, Z., & Liu, Z. (2013). Controllable shrinking of inverted-pyramid silicon nanopore arrays by dry-oxygen oxidation. Nanotechnology, 24(50), 505303.

    Article  Google Scholar 

  57. Wei, C., Bard, A. J., & Feldberg, S. W. (1997). Current rectification at quartz nanopipet electrodes. Analytical Chemistry, 69(22), 4627–4633.

    Article  Google Scholar 

  58. Sun, L., Shigyou, K., Ando, T., & Watanabe, S. (2019). Thermally driven approach to fill sub-10-nm pipettes with batch production. Analytical Chemistry, 91(21), 14080–14084.

    Article  Google Scholar 

  59. Steinbock, L. J., Otto, O., Chimerel, C., Gornall, J., & Keyser, U. F. (2010). Detecting DNA folding with nanocapillaries. Nano Letters, 10(7), 2493–2497.

    Article  Google Scholar 

  60. Yuan, Z., Wang, C., Yi, X., Ni, Z., Chen, Y., & Li, T. (2018). Solid-state nanopore. Nanoscale Research Letters, 13(1), 1–10.

    Article  Google Scholar 

  61. Ma, J., Li, K., Li, Z., Qiu, Y., Si, W., Ge, Y., Sha, J., Liu, L., Xie, X., Yi, H., & Ni, Z. (2019). Drastically reduced ion mobility in a nanopore due to enhanced pairing and collisions between dehydrated ions. Journal of the American Chemical Society, 141(10), 4264–4272.

    Article  Google Scholar 

  62. Yanagi, I., Akahori, R., & Takeda, K. I. (2019). Stable fabrication of a large nanopore by controlled dielectric breakdown in a high-pH solution for the detection of various-sized molecules. Scientific Reports, 9(1), 1–15.

    Article  Google Scholar 

  63. Hayashi, T., Arima, K., Yamashita, N., Park, S., Ma, Z., Tabata, O., & Kawai, K. (2018). Nanopore fabrication of two-dimensional materials on SiO2 membranes using he ion microscopy. IEEE Transactions on Nanotechnology, 17(4), 727–730.

    Article  Google Scholar 

  64. Zahid, O. K., Wang, F., Ruzicka, J. A., Taylor, E. W., & Hall, A. R. (2016). Sequence-specific recognition of microRNAs and other short nucleic acids with solid-state nanopores. Nano Letters, 16(3), 2033–2039.

    Article  Google Scholar 

  65. Henley, R. Y., Ashcroft, B. A., Farrell, I., Cooperman, B. S., Lindsay, S. M., & Wanunu, M. (2016). Electrophoretic deformation of individual transfer RNA molecules reveals their identity. Nano Letters, 16(1), 138–144.

    Article  Google Scholar 

  66. Langecker, M., Ivankin, A., Carson, S., Kinney, S. R., Simmel, F. C., & Wanunu, M. (2015). Nanopores suggest a negligible influence of CpG methylation on nucleosome packaging and stability. Nano Letters, 15(1), 783–790.

    Article  Google Scholar 

  67. Singer, A., Rapireddy, S., Ly, D. H., & Meller, A. (2012). Electronic barcoding of a viral gene at the single-molecule level. Nano Letters, 12(3), 1722–1728.

    Article  Google Scholar 

  68. Yu, J. S., Hong, S. C., Wu, S., Kim, H. M., Lee, C., Lee, J. S., Lee, J. E., & Kim, K. B. (2019). Differentiation of selectively labeled peptides using solid-state nanopores. Nanoscale, 11(5), 2510–2520.

    Article  Google Scholar 

  69. Zhao, X., Ma, R., Hu, Y., Chen, X., Dou, R., Liu, K., Cui, C., Liu, H., Li, Q., Pan, D., & Shan, X. (2019). Translocation of tetrahedral DNA nanostructures through a solid-state nanopore. Nanoscale, 11(13), 6263–6269.

    Article  Google Scholar 

  70. Carlsen, A. T., Zahid, O. K., Ruzicka, J. A., Taylor, E. W., & Hall, A. R. (2014). Selective detection and quantification of modified DNA with solid-state nanopores. Nano Letters, 14(10), 5488–5492.

    Article  Google Scholar 

  71. Plesa, C., Ruitenberg, J. W., Witteveen, M. J., & Dekker, C. (2015). Detection of individual proteins bound along DNA using solid-state nanopores. Nano Letters, 15(5), 3153–3158.

    Article  Google Scholar 

  72. Squires, A., Atas, E., & Meller, A. (2015). Nanopore sensing of individual transcription factors bound to DNA. Scientific Reports, 5(1), 1–11.

    Article  Google Scholar 

  73. Yu, J. S., Lim, M. C., Huynh, D. T. N., Kim, H. J., Kim, H. M., Kim, Y. R., & Kim, K. B. (2015). Identifying the location of a single protein along the DNA strand using solid-state nanopores. ACS Nano, 9(5), 5289–5298.

    Article  Google Scholar 

  74. Asghar, W., Ilyas, A., Billo, J. A., & Iqbal, S. M. (2011). Shrinking of solid-state nanopores by direct thermal heating. Nanoscale Research Letters, 6(1), 1–6.

    Article  Google Scholar 

  75. Li, Q., Xie, S., Liang, Z., Meng, X., Liu, S., Girault, H. H., & Shao, Y. (2009). fast ion-transfer processes at nanoscopic liquid/liquid interfaces. Angewandte Chemie International Edition, 48(43), 8010–8013.

    Article  Google Scholar 

  76. Hu, R., Rodrigues, J. V., Waduge, P., Yamazaki, H., Cressiot, B., Chishti, Y., Makowski, L., Yu, D., Shakhnovich, E., Zhao, Q., & Wanunu, M. (2018). Differential enzyme flexibility probed using solid-state nanopores. ACS Nano, 12(5), 4494–4502.

    Article  Google Scholar 

  77. Darvish, A., Lee, J. S., Peng, B., Saharia, J., VenkatKalyana Sundaram, R., Goyal, G., Bandara, N., Ahn, C. W., Kim, J., Dutta, P., & Chaiken, I. (2019). Mechanical characterization of HIV-1 with a solid-state nanopore sensor. Electrophoresis, 40(5), 776–783.

    Article  Google Scholar 

  78. McMullen, A., De Haan, H. W., Tang, J. X., & Stein, D. (2014). Stiff filamentous virus translocations through solid-state nanopores. Nature Communications, 5(1), 1–10.

    Article  Google Scholar 

  79. Oukhaled, A., Cressiot, B., Bacri, L., Pastoriza-Gallego, M., Betton, J. M., Bourhis, E., Jede, R., Gierak, J., Auvray, L., & Pelta, J. (2011). Dynamics of completely unfolded and native proteins through solid-state nanopores as a function of electric driving force. ACS Nano, 5(5), 3628–3638.

    Article  Google Scholar 

  80. Larkin, J., Henley, R. Y., Jadhav, V., Korlach, J., & Wanunu, M. (2017). Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing. Nature Nanotechnology, 12(12), 1169–1175.

    Article  Google Scholar 

  81. Venkatesan, B. M., Dorvel, B., Yemenicioglu, S., Watkins, N., Petrov, I., & Bashir, R. (2009). Highly sensitive, mechanically stable nanopore sensors for DNA analysis. Advanced Materials, 21(27), 2771–2776.

    Article  Google Scholar 

  82. Venkatesan, B. M., Estrada, D., Banerjee, S., Jin, X., Dorgan, V. E., Bae, M. H., Aluru, N. R., Pop, E., & Bashir, R. (2012). Stacked graphene–Al2O3 nanopore sensors for sensitive detection of DNA and DNA–protein complexes. ACS Nano, 6(1), 441–450.

    Article  Google Scholar 

  83. Park, K. B., Kim, H. J., Kang, Y. H., Yu, J. S., Chae, H., Lee, K., Kim, H. M., & Kim, K. B. (2017). Highly reliable and low-noise solid-state nanopores with an atomic layer deposited ZnO membrane on a quartz substrate. Nanoscale, 9(47), 18772–18780.

    Article  Google Scholar 

  84. Lee, J. S., Oviedo, J. P., Bandara, Y. M., Peng, X., Xia, L., Wang, Q., Garcia, K., Wang, J., Kim, M. J., & Kim, M. J. (2021). Detection of nucleotides in hydrated ssDNA via 2D h-BN nanopore with ionic-liquid/salt-water interface. Electrophoresis, 42(7–8), 991–1002.

    Article  Google Scholar 

  85. Garaj, S., Hubbard, W., Reina, A., Kong, J., Branton, D., & Golovchenko, J. A. (2010). Graphene as a subnanometre trans-electrode membrane. Nature, 467(7312), 190–193.

    Article  Google Scholar 

  86. Schneider, G. F., Xu, Q., Luik, S., Hage, S., Spoor, J. N., Malladi, S., Zandbergen, H. W., & Dekker, C. (2013). Tailoring the surface chemistry and hydrophobicity of graphene nanopores. Nature Communications, 4, 2619.

    Article  Google Scholar 

  87. Harrell, C. C., Lee, S. B., & Martin, C. R. (2003). Synthetic single-nanopore and nanotube membranes. Analytical Chemistry, 75(24), 6861–6867.

    Article  Google Scholar 

  88. Liu, K., Feng, J., Kis, A., & Radenovic, A. (2014). Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano, 8(3), 2504–2511.

    Article  Google Scholar 

  89. Park, K. B., Kim, H. J., Kim, H. M., Han, S. A., Lee, K. H., Kim, S. W., & Kim, K. B. (2016). Noise and sensitivity characteristics of solid-state nanopores with a boron nitride 2-D membrane on a pyrex substrate. Nanoscale, 8(10), 5755–5763.

    Article  Google Scholar 

  90. Prabhu, A. S., Freedman, K. J., Robertson, J. W., Nikolov, Z., Kasianowicz, J. J., & Kim, M. J. (2011). SEM-induced shrinking of solid-state nanopores for single molecule detection. Nanotechnology, 22(42), 425302.

    Article  Google Scholar 

  91. Storm, A. J., Storm, C., Chen, J., Zandbergen, H., Joanny, J. F., & Dekker, C. (2005). Fast DNA translocation through a solid-state nanopore. Nano letters, 5(7), 1193–1197.

    Article  Google Scholar 

  92. Goyal, G., Lee, Y. B., Darvish, A., Ahn, C. W., & Kim, M. J. (2016). Hydrophilic and size-controlled graphene nanopores for protein detection. Nanotechnology, 27(49), 495301.

    Article  Google Scholar 

  93. Beamish, E., Tabard-Cossa, V., & Godin, M. (2017). Identifying structure in short DNA scaffolds using solid-state nanopores. ACS Sensors, 2(12), 1814–1820.

    Article  Google Scholar 

  94. Lin, Y., Ying, Y. L., Shi, X., Liu, S. C., & Long, Y. T. (2017). Direct sensing of cancer biomarkers in clinical samples with a designed nanopore. Chemical Communications, 53(84), 11564–11567.

    Article  Google Scholar 

  95. Carlsen, A. T., Briggs, K., Hall, A. R., & Tabard-Cossa, V. (2017). Solid-state nanopore localization by controlled breakdown of selectively thinned membranes. Nanotechnology, 28(8), 085304.

    Article  Google Scholar 

  96. Gilboa, T., Zrehen, A., Girsault, A., & Meller, A. (2018). Optically-monitored nanopore fabrication using a focused laser beam. Scientific Reports, 8(1), 1–10.

    Article  Google Scholar 

  97. Gilboa, T., Zvuloni, E., Zrehen, A., Squires, A. H., & Meller, A. (2020). Automated, ultra-fast laser-drilling of nanometer scale pores and nanopore arrays in aqueous solutions. Advanced Functional Materials, 30(18), 1900642.

    Article  Google Scholar 

  98. Briggs, K., Kwok, H., & Tabard-Cossa, V. (2014). Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis. Small (Weinheim an der Bergstrasse, Germany), 10(10), 2077–2086.

    Article  Google Scholar 

  99. Wang, Y., Chen, Q., Deng, T., & Liu, Z. (2018). Self-aligned nanopore formed on a SiO2 pyramidal membrane by a multipulse dielectric breakdown method. The Journal of Physical Chemistry C, 122(21), 11516–11523.

    Article  Google Scholar 

  100. Zhang, X., van Deursen, P. M., Fu, W., & Schneider, G. F. (2020). Facile and ultraclean graphene-on-glass nanopores by controlled electrochemical etching. ACS Sensors, 5(8), 2317–2325.

    Article  Google Scholar 

  101. Kong, J., Zhu, J., Chen, K., & Keyser, U. F. (2019). Specific biosensing using DNA aptamers and nanopores. Advanced Functional Materials, 29(3), 1807555.

    Article  Google Scholar 

  102. Loh, A. Y. Y., Burgess, C. H., Tanase, D. A., Ferrari, G., McLachlan, M. A., Cass, A. E. G., & Albrecht, T. (2018). Electric single-molecule hybridization detector for short DNA fragments. Analytical Chemistry, 90(23), 14063–14071.

    Article  Google Scholar 

  103. Weckman, N. E., Ermann, N., Gutierrez, R., Chen, K., Graham, J., Tivony, R., Heron, A., & Keyser, U. F. (2019). Multiplexed DNA identification using site specific dCas9 barcodes and nanopore sensing. ACS Sensors, 4(8), 2065–2072.

    Article  Google Scholar 

  104. Cai, S., Sze, J. Y., Ivanov, A. P., & Edel, J. B. (2019). Small molecule electro-optical binding assay using nanopores. Nature Communications, 10(1), 1–9.

    Article  Google Scholar 

  105. Bafna, J. A., & Soni, G. V. (2016). Fabrication of low noise borosilicate glass nanopores for single molecule sensing. PLoS ONE, 11(6), e0157399.

    Article  Google Scholar 

  106. Zhang, B., Zhang, Y., & White, H. S. (2004). The nanopore electrode. Analytical Chemistry, 76(21), 6229–6238.

    Article  Google Scholar 

  107. Li, W., Bell, N. A., Hernández-Ainsa, S., Thacker, V. V., Thackray, A. M., Bujdoso, R., & Keyser, U. F. (2013). Single protein molecule detection by glass nanopores. ACS Nano, 7(5), 4129–4134.

    Article  Google Scholar 

  108. Sze, J. Y., Ivanov, A. P., Cass, A. E., & Edel, J. B. (2017). Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers. Nature Communications, 8(1), 1–10.

    Article  Google Scholar 

  109. Kubánková, M., Lin, X., Albrecht, T., Edel, J. B., & Kuimova, M. K. (2019). Rapid fragmentation during seeded lysozyme aggregation revealed at the single molecule level. Analytical Chemistry, 91(10), 6880–6886.

    Article  Google Scholar 

  110. Bell, N. A., & Keyser, U. F. (2016). Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores. Nature Nanotechnology, 11(7), 645–651.

    Article  Google Scholar 

  111. Henderson, P. (1978). Fleischer, (PB) Price, and (RM) Walker. Nuclear tracks in solids: Principles and applications. Berkeley and London (Univ. California Press), 1975. xxii+ 605 pp., 205 figs., I pl. Price. Mineralogical Magazine, 42(322), 306–307.

    Article  Google Scholar 

  112. Siwy, Z., Dobrev, D., Neumann, R., Trautmann, C., & Voss, K. (2003). Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal. Applied Physics A, 76(5), 781–785.

    Article  Google Scholar 

  113. Wu, M. Y., Smeets, R. M., Zandbergen, M., Ziese, U., Krapf, D., Batson, P. E., Dekker, N. H., Dekker, C., & Zandbergen, H. W. (2009). Control of shape and material composition of solid-state nanopores. Nano Letters, 9, 479–484.

    Article  Google Scholar 

  114. Van den Hout, M., Hall, A. R., Wu, M. Y., Zandbergen, H. W., Dekker, C., & Dekker, N. H. (2010). Controlling nanopore size, shape and stability. Nanotechnology, 21(11), 115304.

    Article  Google Scholar 

  115. Emmrich, D., Beyer, A., Nadzeyka, A., Bauerdick, S., Meyer, J. C., Kotakoski, J., & Gölzhäuser, A. (2016). Nanopore fabrication and characterization by helium ion microscopy. Applied Physics Letters, 108(16), 163103.

    Article  Google Scholar 

  116. Wu, M. Y., Smeets, R. M., Zandbergen, M., Ziese, U., Krapf, D., Batson, P. E., Dekker, N. H., Dekker, C., & Zandbergen, H. W. (2007). Sub-5 nm FIB direct patterning of nanodevices. Microelectronic Engineering, 84(5–8), 779–783.

    Google Scholar 

  117. Lo, C. J., Aref, T., & Bezryadin, A. (2006). Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams. Nanotechnology, 17(13), 3264.

    Article  Google Scholar 

  118. Sawafta, F., Carlsen, A. T., & Hall, A. R. (2014). Membrane thickness dependence of nanopore formation with a focused helium ion beam. Sensors, 14(5), 8150–8161.

    Article  Google Scholar 

  119. Chou, Y. C., Masih Das, P., Monos, D. S., & Drndić, M. (2020). Lifetime and stability of silicon nitride nanopores and nanopore arrays for ionic measurements. ACS Nano, 14(6), 6715–6728.

    Article  Google Scholar 

  120. Zaraska, L., Czopik, N., Bobruk, M., Sulka, G. D., Mech, J., & Jaskuła, M. (2013). Synthesis of nanoporous tin oxide layers by electrochemical anodization. Electrochimica Acta, 104, 549–557.

    Article  Google Scholar 

  121. Apel, P. Y., Korchev, Y. E., Siwy, Z., Spohr, R., & Yoshida, M. (2001). Diode-like single-ion track membrane prepared by electro-stopping. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(3), 337–346.

    Article  Google Scholar 

  122. Siwy, Z., & Fuliński, A. (2002). Fabrication of a synthetic nanopore ion pump. Physical Review Letters, 89(19), 198103.

    Article  Google Scholar 

  123. Masuda, H., & Fukuda, K. (1995). Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 268(5216), 1466–1468.

    Article  Google Scholar 

  124. Lee, W., & Park, S. J. (2014). Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chemical Reviews, 114(15), 7487–7556.

    Article  Google Scholar 

  125. Pandey, B., Thapa, P. S., Higgins, D. A., & Ito, T. (2012). Formation of self-organized nanoporous anodic oxide from metallic gallium. Langmuir, 28(38), 13705–13711.

    Article  Google Scholar 

  126. Sulka, G. D., Kapusta-Kołodziej, J., Brzózka, A., & Jaskuła, M. (2013). Anodic growth of TiO2 nanopore arrays at various temperatures. Electrochimica Acta, 104, 526–535.

    Article  Google Scholar 

  127. Berger, S., Tsuchiya, H., & Schmuki, P. (2008). Transition from nanopores to nanotubes: Self-ordered anodic oxide structures on titanium–aluminides. Chemistry of Materials, 20(10), 3245–3247.

    Article  Google Scholar 

  128. Nam, S. W., Rooks, M. J., Kim, K. B., & Rossnagel, S. M. (2009). Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Letters, 9(5), 2044–2048.

    Article  Google Scholar 

  129. Zeng, S., Wen, C., Solomon, P., Zhang, S. L., & Zhang, Z. (2019). Rectification of protein translocation in truncated pyramidal nanopores. Nature Nanotechnology, 14(11), 1056–1062.

    Article  Google Scholar 

  130. Kim, M. J., McNally, B., Murata, K., & Meller, A. (2007). Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology, 18(20), 205302.

    Article  Google Scholar 

  131. Wang, R., Gilboa, T., Song, J., Huttner, D., Grinstaff, M. W., & Meller, A. (2018). Single-molecule discrimination of labeled DNAs and polypeptides using photoluminescent-free TiO2 nanopores. ACS Nano, 12(11), 11648–11656.

    Article  Google Scholar 

  132. Mojtabavi, M., VahidMohammadi, A., Liang, W., Beidaghi, M., & Wanunu, M. (2019). Single-molecule sensing using nanopores in two-dimensional transition metal carbide (MXene) membranes. ACS Nano, 13(3), 3042–3053.

    Article  Google Scholar 

  133. Chen, K., Zhu, J., Boskovic, F., & Keyser, U. F. (2020). Nanopore-based DNA hard drives for rewritable and secure data storage. Nano Letters, 20(5), 3754–3760.

    Article  Google Scholar 

  134. Rodríguez-Manzo, J. A., Puster, M., Nicolaï, A., Meunier, V., & Drndic, M. (2015). DNA translocation in nanometer thick silicon nanopores. ACS Nano, 9(6), 6555–6564.

    Article  Google Scholar 

  135. Traversi, F., Raillon, C., Benameur, S. M., Liu, K., Khlybov, S., Tosun, M., Krasnozhon, D., Kis, A., & Radenovic, A. (2013). Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nature Nanotechnology, 8(12), 939–945.

    Article  Google Scholar 

  136. Schneider, G. F., Kowalczyk, S. W., Calado, V. E., Pandraud, G., Zandbergen, H. W., Vandersypen, L. M., & Dekker, C. (2010). DNA translocation through graphene nanopores. Nano Letters, 10(8), 3163–3167.

    Article  Google Scholar 

  137. Geim, A. K. (2009). Graphene: Status and prospects. Science, 324(5934), 1530–1534.

    Article  Google Scholar 

  138. Merchant, C. A., Healy, K., Wanunu, M., Ray, V., Peterman, N., Bartel, J., Fischbein, M. D., Venta, K., Luo, Z., Johnson, A. C., & Drndic, M. (2010). DNA translocation through graphene nanopores. Nano Letters, 10(8), 2915–2921.

    Article  Google Scholar 

  139. Yuan, L., & Huang, L. (2015). Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale, 7(16), 7402–7408.

    Article  Google Scholar 

  140. Heerema, S. J., Vicarelli, L., Pud, S., Schouten, R. N., Zandbergen, H. W., & Dekker, C. (2018). Probing DNA translocations with inplane current signals in a graphene nanoribbon with a nanopore. ACS Nano, 12(3), 2623–2633.

    Article  Google Scholar 

  141. Wanunu, M., Sutin, J., McNally, B., Chow, A., & Meller, A. (2008). DNA translocation governed by interactions with solid-state nanopores. Biophysical Journal, 95(10), 4716–4725.

    Article  Google Scholar 

  142. Liang, L., Cui, P., Wang, Q., Wu, T., Ågren, H., & Tu, Y. (2013). Theoretical study on key factors in DNA sequencing with graphene nanopores. RSC Advances, 3(7), 2445–2453.

    Article  Google Scholar 

  143. Luan, B., & Aksimentiev, A. (2010). Electric and electrophoretic inversion of the DNA charge in multivalent electrolytes. Soft Matter, 6(2), 243–246.

    Article  Google Scholar 

  144. He, Y., Tsutsui, M., Fan, C., Taniguchi, M., & Kawai, T. (2011). Controlling DNA translocation through gate modulation of nanopore wall surface charges. ACS Nano, 5(7), 5509–5518.

    Article  Google Scholar 

  145. Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A. Y., & Meller, A. (2010). Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nature Nanotechnology, 5(2), 160–165.

    Article  Google Scholar 

  146. Tsutsui, M., He, Y., Furuhashi, M., Rahong, S., Taniguchi, M., & Kawai, T. (2012). Transverse electric field dragging of DNA in a nanochannel. Scientific Reports, 2(1), 1–7.

    Article  Google Scholar 

  147. Kowalczyk, S. W., Wells, D. B., Aksimentiev, A., & Dekker, C. (2012). Slowing down DNA translocation through a nanopore in lithium chloride. Nano Letters, 12(2), 1038–1044.

    Article  Google Scholar 

  148. Anderson, B. N., Muthukumar, M., & Meller, A. (2013). pH tuning of DNA translocation time through organically functionalized nanopores. ACS Nano, 7(2), 1408–1414.

    Article  Google Scholar 

  149. Yeh, I. C., & Hummer, G. (2004). Nucleic acid transport through carbon nanotube membranes. Proceedings of the National Academy of Sciences, 101(33), 12177–12182.

    Article  Google Scholar 

  150. Luan, B., Stolovitzky, G., & Martyna, G. (2012). Slowing and controlling the translocation of DNA in a solid-state nanopore. Nanoscale, 4(4), 1068–1077.

    Article  Google Scholar 

  151. Akca, S., Foroughi, A., Frochtzwajg, D., & Postma, H. W. C. (2011). Competing interactions in DNA assembly on graphene. PLoS ONE, 6(4), e18442.

    Article  Google Scholar 

  152. Yoshida, H., Goto, Y., Akahori, R., Tada, Y., Terada, S., Komura, M., & Iyoda, T. (2016). Slowing the translocation of single-stranded DNA by using nano-cylindrical passage self-assembled by amphiphilic block copolymers. Nanoscale, 8(43), 18270–18276.

    Article  Google Scholar 

  153. Goto, Y., Haga, T., Yanagi, I., Yokoi, T., & Takeda, K. I. (2015). Deceleration of single-stranded DNA passing through a nanopore using a nanometre-sized bead structure. Scientific Reports, 5(1), 1–7.

    Article  Google Scholar 

  154. Squires, A. H., Hersey, J. S., Grinstaff, M. W., & Meller, A. (2013). A nanopore–nanofiber mesh biosensor to control DNA translocation. Journal of the American Chemical Society, 135(44), 16304–16307.

    Article  Google Scholar 

  155. Tang, Z., Liang, Z., Lu, B., Li, J., Hu, R., Zhao, Q., & Yu, D. (2015). Gel mesh as “brake” to slow down DNA translocation through solid-state nanopores. Nanoscale, 7(31), 13207–13214.

    Article  Google Scholar 

  156. Plesa, C., Kowalczyk, S. W., Zinsmeester, R., Grosberg, A. Y., Rabin, Y., & Dekker, C. (2013). Fast translocation of proteins through solid state nanopores. Nano Letters, 13(2), 658–663.

    Article  Google Scholar 

  157. Smoluchowski, M. V. (1917). Engineering biological structures of prescribed shape using self-assembled multicellular systems. Zeitschrift für Physikalische Chemie, 92, 129.

    Google Scholar 

  158. Pedone, D., Firnkes, M., & Rant, U. (2009). Data analysis of translocation events in nanopore experiments. Analytical Chemistry, 81(23), 9689–9694.

    Article  Google Scholar 

  159. Larkin, J., Henley, R. Y., Muthukumar, M., Rosenstein, J. K., & Wanunu, M. (2014). High-bandwidth protein analysis using solid-state nanopores. Biophysical Journal, 106(3), 696–704.

    Article  Google Scholar 

  160. Asandei, A., Schiopu, I., Chinappi, M., Seo, C. H., Park, Y., & Luchian, T. (2016). Electroosmotic trap against the electrophoretic force near a protein nanopore reveals peptide dynamics during capture and translocation. ACS Applied Materials and Interfaces, 8(20), 13166–13179.

    Article  Google Scholar 

  161. Muthukumar, M. (2014). Communication: Charge, diffusion, and mobility of proteins through nanopores. The Journal of Chemical Physics, 141(8), 081104.

    Article  Google Scholar 

  162. Kumar, A., Park, K. B., Kim, H. M., & Kim, K. B. (2013). Noise and its reduction in graphene based nanopore devices. Nanotechnology, 24(49), 495503.

    Article  Google Scholar 

  163. Fragasso, A., Schmid, S., & Dekker, C. (2020). Comparing current noise in biological and solid-state nanopores. ACS Nano, 14(2), 1338–1349.

    Article  Google Scholar 

  164. Waggoner, P. S., Kuan, A. T., Polonsky, S., Peng, H., & Rossnagel, S. M. (2011). Increasing the speed of solid-state nanopores. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 29(3), 032206.

    Article  Google Scholar 

  165. Uram, J. D., Ke, K., & Mayer, M. (2008). Noise and bandwidth of current recordings from submicrometer pores and nanopores. ACS Nano, 2(5), 857–872.

    Article  Google Scholar 

  166. Smeets, R. M., Keyser, U. F., Wu, M. Y., Dekker, N. H., & Dekker, C. (2006). Nanobubbles in solid-state nanopores. Physical Review Letters, 97(8), 088101.

  167. Marion, S., Macha, M., Davis, S. J., Chernev, A., & Radenovic, A. (2021). Wetting of nanopores probed with pressure. Physical Chemistry Chemical Physics, 23(8), 4975–4987.

  168. Gravelle, S., Netz, R. R., & Bocquet, L. (2019). Adsorption kinetics in open nanopores as a source of low-frequency noise. Nano Letters, 19(10), 7265–7272.

    Article  Google Scholar 

  169. Beamish, E., Kwok, H., Tabard-Cossa, V., & Godin, M. (2012). Precise control of the size and noise of solid-state nanopores using high electric fields. Nanotechnology, 23(40), 405301.

    Article  Google Scholar 

  170. Steinbock, L. J., Bulushev, R. D., Krishnan, S., Raillon, C., & Radenovic, A. (2013). DNA translocation through low-noise glass nanopores. ACS Nano, 7(12), 11255–11262.

    Article  Google Scholar 

  171. Balan, A., Machielse, B., Niedzwiecki, D., Lin, J., Ong, P., Engelke, R., Shepard, K. L., & Drndić, M. (2014). Improving signal-to-noise performance for DNA translocation in solid-state nanopores at MHz bandwidths. Nano Letters, 14(12), 7215–7220.

    Article  Google Scholar 

  172. Fragasso, A., Pud, S. & Dekker, C. (2019). 1/f noise in solid-state nanopores is governed by access and surface regions. Nanotechnology, 30(39), 395202.

  173. Saleh, O. A., & Sohn, L. L. (2001). Quantitative sensing of nanoscale colloids using a microchip coulter counter. Review of Scientific Instruments, 72(12), 4449–4451.

    Article  Google Scholar 

  174. Varongchayakul, N., Song, J., Meller, A., & Grinstaff, M. W. (2018). Single-molecule protein sensing in a nanopore: A tutorial. Chemical Society Reviews, 47(23), 8512–8524.

    Article  Google Scholar 

  175. Smeets, R. M., Keyser, U. F., Dekker, N. H., & Dekker, C. (2008). Noise in solid-state nanopores. Proceedings of the National Academy of Sciences, 105(2), 417–421.

    Article  Google Scholar 

  176. Liu, L. F., Liu, C. C., & Alberts, B. M. (1980). Type II DNA topoisomerases: Enzymes that can unknot a topologically knotted DNA molecule via a reversible double-strand break. Cell, 19(3), 697–707.

    Article  Google Scholar 

  177. Plesa, C., Verschueren, D., Pud, S., Van Der Torre, J., Ruitenberg, J. W., Witteveen, M. J., Jonsson, M. P., Grosberg, A. Y., Rabin, Y., & Dekker, C. (2016). Direct observation of DNA knots using a solid-state nanopore. Nature Nanotechnology, 11(12), 1093–1097.

    Article  Google Scholar 

  178. Sharma, R. K., Agrawal, I., Dai, L., Doyle, P. S., & Garaj, S. (2019). Complex DNA knots detected with a nanopore sensor. Nature Communications, 10(1), 1–9.

    Google Scholar 

  179. Shim, J., Kim, Y., Humphreys, G. I., Nardulli, A. M., Kosari, F., Vasmatzis, G., Taylor, W. R., Ahlquist, D. A., Myong, S., & Bashir, R. (2015). Nanopore-based assay for detection of methylation in double-stranded DNA fragments. ACS Nano, 9(1), 290–300.

    Article  Google Scholar 

  180. Charron, M., Briggs, K., King, S., Waugh, M., & Tabard-Cossa, V. (2019). Precise DNA concentration measurements with nanopores by controlled counting. Analytical Chemistry, 91(19), 12228–12237.

    Article  Google Scholar 

  181. Bell, N. A., & Keyser, U. F. (2015). Specific protein detection using designed DNA carriers and nanopores. Journal of the American Chemical Society, 137(5), 2035–2041.

    Article  Google Scholar 

  182. Han, A., Schürmann, G., Mondin, G., Bitterli, R.A., Hegelbach, N.G., de Rooij, N.F. & Staufer, U. (2006). Sensing protein molecules using nanofabricated pores. Applied Physics Letters, 88(9), 093901.

  183. Talaga, D. S., & Li, J. (2009). Single-molecule protein unfolding in solid state nanopores. Journal of the American Chemical Society, 131(26), 9287–9297.

    Article  Google Scholar 

  184. Firnkes, M., Pedone, D., Knezevic, J., Doblinger, M., & Rant, U. (2010). Electrically facilitated translocations of proteins through silicon nitride nanopores: Conjoint and competitive action of diffusion, electrophoresis, and electroosmosis. Nano Letters, 10(6), 2162–2167.

    Article  Google Scholar 

  185. Saharia, J., Bandara, Y. N. D., Goyal, G., Lee, J. S., Karawdeniya, B. I., & Kim, M. J. (2019). Molecular-level profiling of human serum transferrin protein through assessment of nanopore-based electrical and chemical responsiveness. ACS Nano, 13(4), 4246–4254.

    Article  Google Scholar 

  186. Yusko, E. C., Prangkio, P., Sept, D., Rollings, R. C., Li, J., & Mayer, M. (2012). Single-particle characterization of Aβ oligomers in solution. ACS Nano, 6(7), 5909–5919.

    Article  Google Scholar 

  187. Kaur, H., Nandivada, S., Acharjee, M. C., McNabb, D. S., & Li, J. (2018). Estimating RNA polymerase protein binding sites on λ DNA using solid-state nanopores. ACS Sensors, 4(1), 100–109.

    Article  Google Scholar 

  188. Raillon, C., Cousin, P., Traversi, F., Garcia-Cordero, E., Hernandez, N., & Radenovic, A. (2012). Nanopore detection of single molecule RNAP–DNA transcription complex. Nano Letters, 12(3), 1157–1164.

    Article  Google Scholar 

  189. Kong, J., Bell, N. A., & Keyser, U. F. (2016). Quantifying nanomolar protein concentrations using designed DNA carriers and solid-state nanopores. Nano Letters, 16(6), 3557–3562.

    Article  Google Scholar 

  190. Uram, J. D., Ke, K., Hunt, A. J., & Mayer, M. (2006). Submicrometer pore-based characterization and quantification of antibody–virus interactions. Small (Weinheim an der Bergstrasse, Germany), 2(8–9), 967–972.

    Article  Google Scholar 

  191. Freedman, K. J., Bastian, A. R., Chaiken, I., & Kim, M. J. (2013). Solid-state nanopore detection of protein complexes: Applications in healthcare and protein kinetics. Small (Weinheim an der Bergstrasse, Germany), 9(5), 750–759.

    Article  Google Scholar 

  192. Zhou, K., Li, L., Tan, Z., Zlotnick, A., & Jacobson, S. C. (2011). Characterization of hepatitis B virus capsids by resistive-pulse sensing. Journal of the American Chemical Society, 133(6), 1618–1621.

    Article  Google Scholar 

  193. Tsutsui, M., Yamazaki, T., Tatematsu, K., Yokota, K., Esaki, Y., Kubo, Y., Deguchi, H., Arima, A., Kuroda, S. I., & Kawai, T. (2019). High-throughput single nanoparticle detection using a feed-through channel-integrated nanopore. Nanoscale, 11(43), 20475–20484.

    Article  Google Scholar 

  194. Arima, A., Tsutsui, M., Harlisa, I. H., Yoshida, T., Tanaka, M., Yokota, K., Tonomura, W., Taniguchi, M., Okochi, M., Washio, T., & Kawai, T. (2018). Selective detections of single-viruses using solid-state nanopores. Scientific Reports, 8(1), 1–7.

    Article  Google Scholar 

  195. Shi, X., Gao, R., Ying, Y. L., Si, W., Chen, Y. F., & Long, Y. T. (2016). A scattering nanopore for single nanoentity sensing. ACS Sensors, 1(9), 1086–1090.

    Article  Google Scholar 

  196. Shi, X., Verschueren, D. V., & Dekker, C. (2018). Active delivery of single DNA molecules into a plasmonic nanopore for label-free optical sensing. Nano Letters, 18(12), 8003–8010.

    Article  Google Scholar 

  197. Jadhav, V., Hoogerheide, D. P., Korlach, J., & Wanunu, M. (2018). Porous Zero-Mode Waveguides for Picogram-Level DNA Capture. Nano Letters, 19(2), 921–929.

    Article  Google Scholar 

  198. Garoli, D., Yamazaki, H., Maccaferri, N., & Wanunu, M. (2019). Plasmonic nanopores for single-molecule detection and manipulation: Toward sequencing applications. Nano Letters, 19(11), 7553–7562.

    Article  Google Scholar 

  199. Ohshiro, T., Tsutsui, M., Yokota, K., Furuhashi, M., Taniguchi, M., & Kawai, T. (2014). Detection of post-translational modifications in single peptides using electron tunnelling currents. Nature Nanotechnology, 9(10), 835–840.

    Article  Google Scholar 

  200. Dimitrov, V., Mirsaidov, U., Wang, D., Sorsch, T., Mansfield, W., Miner, J., Klemens, F., Cirelli, R., Yemenicioglu, S., & Timp, G. (2010). Nanopores in solid-state membranes engineered for single molecule detection. Nanotechnology, 21(6), 065502.

    Article  Google Scholar 

  201. Tabard-Cossa, V., Trivedi, D., Wiggin, M., Jetha, N. N., & Marziali, A. (2007). Noise analysis and reduction in solid-state nanopores. Nanotechnology, 18(30), 305505.

    Article  Google Scholar 

  202. Lee, K., Park, K. B., Kim, H. J., Yu, J. S., Chae, H., Kim, H. M., & Kim, K. B. (2018). Recent progress in solid-state nanopores. Advanced Materials, 30(42), 1704680.

    Article  Google Scholar 

  203. Smeets, R. M. M., Dekker, N. H., & Dekker, C. (2009). Low-frequency noise in solid-state nanopores. Nanotechnology, 20(9), 095501.

    Article  Google Scholar 

  204. Sherman-Gold, R. (Ed.). (1993). The Axon guide for electrophysiology and biophysics: Laboratory techniques. Axon Instruments.

    Google Scholar 

  205. Heerema, S. J., Schneider, G. F., Rozemuller, M., Vicarelli, L., Zandbergen, H. W., & Dekker, C. (2015). 1/f noise in graphene nanopores. Nanotechnology, 26(7), 074001.

    Article  Google Scholar 

  206. Chang, H., Kosari, F., Andreadakis, G., Alam, M. A., Vasmatzis, G., & Bashir, R. (2004). DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels. Nano Letters, 4(8), 1551–1556.

    Article  Google Scholar 

  207. Smeets, R. M., Keyser, U. F., Krapf, D., Wu, M. Y., Dekker, N. H., & Dekker, C. (2006). Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Letters, 6(1), 89–95.

    Article  Google Scholar 

  208. Yang, L., & Yamamoto, T. (2016). Quantification of virus particles using nanopore-based resistive-pulse sensing techniques. Frontiers in Microbiology, 7, 1500.

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Research Foundation of Korea (NRF) grants funded by the Korean government (Ministry of Science and ICT) (NRF-2020R1A2C300488512 and NRF-2020R1A4A200272812).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungchul Lee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haq, M.R., Lee, B.J. & Lee, J. Solid-State Nanopore for Molecular Detection. Int. J. Precis. Eng. Manuf. 22, 2001–2026 (2021). https://doi.org/10.1007/s12541-021-00590-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-021-00590-2

Keywords

Navigation