Skip to main content
Log in

Solid-State Nanopore/Nanochannel Sensing of Single Entities

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Solid-state nanopores/nanochannels, with their high stability, tunable geometry, and controllable surface chemistry, have recently become an important tool for constructing biosensors. Compared with traditional biosensors, biosensors constructed with solid-state nanopores/nanochannels exhibit significant advantages of high sensitivity, high specificity, and high spatiotemporal resolution in the detection single entities (such as single molecules, single particles, and single cells) due to their unique nanoconfined space-induced target enrichment effect. Generally, the solid-state nanopore/nanochannel modification method is the inner wall modification, and the detection principles are the resistive pulse method and the steady-state ion current method. During the detection process, solid-state nanopore/nanochannel is easily blocked by single entities, and interfering substances easily enter the solid-state nanopore/nanochannel to generate interference signals, resulting in inaccurate measurement results. In addition, the problem of low flux in the detection process of solid-state nanopore/nanochannel, these defects limit the application of solid-state nanopore/nanochannel. In this review, we introduce the preparation and functionalization of solid-state nanopore/nanochannel, the research progress in the field of single entities sensing, and the novel sensing strategies on solving the above problems in solid-state nanopore/nanochannel single-entity sensing. At the same time, the challenges and prospects of solid-state nanopore/nanochannel for single-entity electrochemical sensing are also discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data is available when requested.

References

  1. Bayat P, Rambaud C, Priem B, Bourderioux M, Bilong M, Poyer S, Pastoriza Gallego M, Oukhaled A, Mathé J, Daniel R (2022) Comprehensive structural assignment of glycosaminoglycan oligo-and polysaccharides by protein nanopore. Nat Commun 13:5113. https://doi.org/10.1038/s41467-022-32800-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fu J, Wu L, Hu G, Li F, Ge Q, Lu Z, Tu J (2022) Solid-state nanopore analysis on conformation change of DNA polymerase I induced by DNA substrate. Analyst 147:3087–3095. https://doi.org/10.1039/D2AN00567K

    Article  CAS  PubMed  Google Scholar 

  3. Li J, Li M, Li X, Wu X, Ying Y, Long Y (2022) Full width at half maximum of nanopore current blockage controlled by a single-biomolecule interface. Langmuir 38:1188–1193. https://doi.org/10.1021/acs.langmuir.1c02900

    Article  CAS  PubMed  Google Scholar 

  4. Wang H, Tang H, Li Y (2021) Intrinsic electrocatalytic activity of single MoS2 quantum dot collision on Ag ultramicroelectrodes. J Phys Chem C 125:3337–3345. https://doi.org/10.1021/acs.jpcc.0c09644

    Article  CAS  Google Scholar 

  5. Zhao H, Ma J, Zuo X, Li F (2021) Electrochemical analysis for multiscale single entities on the confined interface. Chin J Chem 39:1745–1752. https://doi.org/10.1002/cjoc.202000722

    Article  CAS  Google Scholar 

  6. Huang W, Chen Y, Wu L, Long M, Lin Z, Su Q, Zheng F, Wu S, Li H, Yu G (2022) 3D co-doped Ni-based conductive MOFs modified electrochemical sensor for highly sensitive detection of l-tryptophan. Talanta 247:123596. https://doi.org/10.1016/j.talanta.2022.123596

    Article  CAS  PubMed  Google Scholar 

  7. Song J, Lin X, Jiang N, Huang M (2022) Carbon-doped WO3 electrochemical aptasensor based on Box-Behnken strategy for highly-sensitive detection of tetracycline. Food Chem 367:130564. https://doi.org/10.1016/j.foodchem.2021.130564

    Article  CAS  PubMed  Google Scholar 

  8. Ma H, Yu R, Ying Y, Long Y (2022) Electrochemically confined effects on single enzyme detection with nanopipettes. J Electroanal Chem 908:116086. https://doi.org/10.1016/j.jelechem.2022.116086

    Article  CAS  Google Scholar 

  9. Liu R, Wang D (2022) Pressure-regulated single-entity electrochemistry inside carbon nanopipettes. ACS Sens 7:1138–1144. https://doi.org/10.1021/acssensors.2c00143

    Article  CAS  PubMed  Google Scholar 

  10. Wang J, Zhou Y, Jiang L (2021) Bio-inspired track-etched polymeric nanochannels: steady-state biosensors for detection of analytes. ACS Nano 15:18974–19013. https://doi.org/10.1021/acsnano.1c08582

    Article  CAS  PubMed  Google Scholar 

  11. Zhang R, Liu X, Zeng Q, Shen H, Wang L (2022) Studies on the morphology effect on catalytic ability of a single MnO2 catalyst particle with a solid nanopipette. ACS Sens 7:338–344. https://doi.org/10.1021/acssensors.1c02729

    Article  CAS  PubMed  Google Scholar 

  12. Lu J, Jiang Y, Yu P, Jiang W, Mao L (2022) Light-controlled ionic/molecular transport through solid-state nanopores and nanochannels. Chem Asian J 17:e202200158. https://doi.org/10.1002/asia.202200158

    Article  CAS  PubMed  Google Scholar 

  13. Ryuzaki S, Yasui T, Tsutsui M, Yokota K, Komoto Y, Paisrisarn P, Kaji N, Ito D, Tamada K, Ochiya T, Taniguchi M, Baba Y, Kawai T (2021) Rapid discrimination of extracellular vesicles by shape distribution analysis. Anal Chem 93:7037–7044. https://doi.org/10.1021/acs.analchem.1c00258

    Article  CAS  PubMed  Google Scholar 

  14. Chung NX, Gatty HK, Lu X, Zhang M, Linnros J (2021) Optimized electrochemical breakdown etching using temporal voltage variation for formation of nanopores in a silicon membrane. Sens Actuators B 331:129323. https://doi.org/10.1016/j.snb.2020.129323

    Article  CAS  Google Scholar 

  15. Wei G, Hu R, Li Q, Lu W, Liang H, Nan H, Lu J, Li J, Zhao Q (2022) Oligonucleotide discrimination enabled by tannic acid-coordinated film-coated solid-state nanopores. Langmuir 38:6443–6453. https://doi.org/10.1021/acs.langmuir.2c00638

    Article  CAS  PubMed  Google Scholar 

  16. Cayon VM, Laucirica G, Toum TY, Cortez ML, Perez-Mitta G, Shen J, Hess C, Toimil-Molares ME, Trautmann C, Marmisolle WA, Azzaroni O (2021) Borate-driven ionic rectifiers based on sugar-bearing single nanochannels. Nanoscale 13:11232–11241. https://doi.org/10.1039/d0nr07733j

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Ma D, Gu Z, Zhan L, Sha J (2021) Fast fabrication of solid-state nanopores for DNA molecule analysis. Nanomaterials 11:2450. https://doi.org/10.3390/nano11092450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kishimoto S, Leong IW, Murayama S, Nakada T, Komoto Y, Tsutsui M, Taniguchi M (2022) 3D designing of resist membrane pores via direct electron beam lithography. Sens Actuators B 357:131380. https://doi.org/10.1016/j.snb.2022.131380

    Article  CAS  Google Scholar 

  19. Ritt CL, de Souza JP, Barsukov MG, Yosinski S, Bazant MZ, Reed MA, Elimelech M (2022) Thermodynamics of charge regulation during ion transport through silica nanochannels. ACS Nano 16:15249–15260. https://doi.org/10.1021/acsnano.2c06633

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Chen X, Wang C, Chang H, Guan X (2022) Nanoparticle-assisted detection of nucleic acids in a polymeric nanopore with a large pore size. Biosens Bioelectron 196:113697. https://doi.org/10.1016/j.bios.2021.113697

    Article  CAS  PubMed  Google Scholar 

  21. Dutt S, Apel P, Lizunov N, Notthoff C, Wen Q, Trautmann C, Mota-Santiago P, Kirby N, Kluth P (2021) Shape of nanopores in track-etched polycarbonate membranes. J Membr Sci 638:119681. https://doi.org/10.1016/j.memsci.2021.119681

    Article  CAS  Google Scholar 

  22. Xiong Y, Li M, Lu W, Wang D, Tang M, Liu Y, Na B, Qin H, Qing G (2021) Discerning tyrosine phosphorylation from multiple phosphorylations using a nanofluidic logic platform. Anal Chem 93:16113–16122. https://doi.org/10.1021/acs.analchem.1c03889

    Article  CAS  PubMed  Google Scholar 

  23. Gong J, Zhang T, Chen P, Yan F, Liu J (2022) Bipolar silica nanochannel array for dual-mode electrochemiluminescence and electrochemical immunosensing platform. Sens Actuators B 368:132086. https://doi.org/10.1016/j.snb.2022.132086

    Article  CAS  Google Scholar 

  24. Xia X, Li H, Zhou G, Ge L, Li F (2020) In situ growth of nano-gold on anodized aluminum oxide with tandem nanozyme activities towards sensitive electrochemical nanochannel sensing. Analyst 145:6617–6624. https://doi.org/10.1016/j.snb.2022.132086

    Article  CAS  PubMed  Google Scholar 

  25. Fei W, Xue M, Qiu H, Guo W (2019) Heterogeneous graphene oxide membrane for rectified ion transport. Nanoscale 11:1313–1318. https://doi.org/10.1039/c8nr07557c

    Article  CAS  PubMed  Google Scholar 

  26. Jia P, Wang L, Zhang Y, Yang Y, Jin X, Zhou M, Quan D, Jia M, Cao L, Long R, Jiang L, Guo W (2021) Harnessing ionic power from equilibrium electrolyte solution via photoinduced active ion transport through van-der-waals-like heterostructures. Adv Mater 33:2007529. https://doi.org/10.1002/adma.202007529

    Article  CAS  Google Scholar 

  27. Qin S, Liu D, Wang G, Portehault D, Garvey CJ, Gogotsi Y, Lei W, Chen Y (2017) High and stable ionic conductivity in 2D nanofluidic ion channels between boron nitride layers. J Am Chem Soc 139:6314–6320. https://doi.org/10.1021/jacs.6b11100

    Article  CAS  PubMed  Google Scholar 

  28. Lao J, Zhou K, Pan S, Luo J, Gao J, Dong A, Jiang L (2022) Spontaneous and selective potassium transport through a suspended tailor-cut Ti3C2Tx MXene film. ACS Nano 16:9142–9149. https://doi.org/10.1021/acsnano.2c01304

    Article  CAS  PubMed  Google Scholar 

  29. Yang M, Ma C, Ding S, Zhu Y, Shi G, Zhu A (2019) Rational design of stimuli-responsive polymers modified nanopores for selective and sensitive determination of salivary glucose. Anal Chem 91:14029–14035. https://doi.org/10.1021/acs.analchem.9b03646

    Article  CAS  PubMed  Google Scholar 

  30. Chen X, Zhao X, Ma R, Hu Y, Cui C, Mi Z, Dou R, Pan D, Shan X, Wang L, Fan C, Lu X (2022) Ionic current fluctuation and orientation of tetrahedral DNA nanostructures in a solid-state nanopore. Small 18:2107237. https://doi.org/10.1002/smll.202107237

    Article  CAS  Google Scholar 

  31. Kant K, Priest C, Shapter JG, Losic D (2014) The influence of nanopore dimensions on the electrochemical properties of nanopore arrays studied by impedance spectroscopy. Sensors 14:21316–21328. https://doi.org/10.3390/s141121316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang C, Jin D, Yu Y, Tang L, Sun Y, Sun Z, Zhang G (2020) A dual antibody-modified nanochannel biosensor for capture and identification of exosomes. Sens Actuators B 314:128056. https://doi.org/10.1016/j.snb.2020.128056

    Article  CAS  Google Scholar 

  33. Pardehkhorram R, Andrieu-Brunsen A (2022) Pushing the limits of nanopore transport performance by polymer functionalization. Chem Commun 58:5188–5204. https://doi.org/10.1039/d2cc01164f

    Article  CAS  Google Scholar 

  34. Xiao K, Xie G, Li P, Liu Q, Hou GL, Zhang Z, Ma J, Tian Y, Wen LP, Jiang L (2014) A biomimetic multi-stimuli-response ionic gate using a hydroxypyrene derivation-functionalized asymmetric single nanochannel. Adv Mater 26:6560–6565. https://doi.org/10.1002/adma.201402247

    Article  CAS  PubMed  Google Scholar 

  35. Xiao Z, Huang C, Jiang S, Kong X, Teng Y, Niu B, Zhu C, Xin W, Chen X, Wen L, Wei Y, Deng X (2021) Ultra-sensitive and selective electrochemical bio-fluid biopsy for oral cancer screening. Small Methods 5:2001205. https://doi.org/10.1002/smtd.202001205

    Article  CAS  Google Scholar 

  36. Hu J, Jiang W, Chen Q, Liu R, Lou X, Xia F (2021) Solid-state nanochannel with multiple signal outputs for furin detection based on the biocompatible condensation reaction. Anal Chem 93:14036–14041. https://doi.org/10.1021/acs.analchem.1c03727

    Article  CAS  PubMed  Google Scholar 

  37. Ishizaki Y, Yamamoto S, Miyashita T, Mitsuishi M (2021) pH-responsive ultrathin nanoporous SiO2 films for selective ion permeation. Langmuir 37:5627–5634. https://doi.org/10.1021/acs.langmuir.1c00486

    Article  CAS  PubMed  Google Scholar 

  38. Li X, Zhai T, Gao P, Cheng H, Hou R, Lou X, Xia F (2018) Role of outer surface probes for regulating ion gating of nanochannels. Nat Commun 9:40. https://doi.org/10.1038/s41467-017-02447-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harrell CC, Kohli P, Siwy Z, Martin CR (2004) DNA-nanotube artificial ion channels. J Am Chem Soc 126:15646–15647. https://doi.org/10.1021/ja044948v

    Article  CAS  PubMed  Google Scholar 

  40. Acar ET, Buchsbaum SF, Combs C, Fornasiero F, Siwy ZS (2019) Biomimetic potassium-selective nanopores. Sci Adv 5:2568. https://doi.org/10.1126/sciadv.aav2568

    Article  CAS  Google Scholar 

  41. Tang H, Wang H, Zhao D, Cao M, Zhu Y, Li Y (2022) Nanopore-based single-entity electrochemistry for the label-free monitoring of single-molecule glycoprotein-boronate affinity interaction and its sensing application. Anal Chem 94:5715–5722. https://doi.org/10.1021/acs.analchem.2c00860

    Article  CAS  PubMed  Google Scholar 

  42. Qin H, Ding X, Cheng S, Qin S, Han X, Sun Y, Liu Y (2022) An H2S-regulated artificial nanochannel fabricated by a supramolecular coordination strategy. J Phys Chem Lett 13:9232–9237. https://doi.org/10.1021/acs.jpclett.2c02233

    Article  CAS  PubMed  Google Scholar 

  43. Ma Q, Si Z, Li Y, Wang D, Wu X, Gao P, Xia F (2019) Functional solid-state nanochannels for biochemical sensing. Trends Anal Chem 115:174–186. https://doi.org/10.1016/j.trac.2019.04.014

    Article  CAS  Google Scholar 

  44. Lenart WR, Kong W, Oltjen WC, Hore MJ (2019) Translocation of soft phytoglycogen nanoparticles through solid-state nanochannels. J Mater Chem B 7:6428–6437. https://doi.org/10.1039/c9tb01048c

    Article  CAS  PubMed  Google Scholar 

  45. Yi W, Li X, He X, Yue F, Wang T (2022) Glass nanopipette sensing of single entities. J Electroanal Chem 909:116106. https://doi.org/10.1016/j.jelechem.2022.116106

    Article  CAS  Google Scholar 

  46. Zhou Y, Wang D, Li C, Hu P, Jin Y (2019) Resistive-pulse sensing and surface charge analysis of a single nanoparticle collision at a conical glass nanopore. Anal Chem 91:7648–7653. https://doi.org/10.1021/acs.analchem.9b00553

    Article  CAS  PubMed  Google Scholar 

  47. Li T, He X, Zhang K, Wang K, Yu P, Mao L (2016) Observing single nanoparticle events at the orifice of a nanopipet. Chem Sci 7:6365–6368. https://doi.org/10.1039/c6sc02241c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang S, Shi W, Li K, Han D, Xu J (2022) Ultrasensitive and label-free detection of multiple DNA methyltransferases by asymmetric nanopore biosensor. Anal Chem 94:4407–4416. https://doi.org/10.1021/acs.analchem.1c05332

    Article  CAS  PubMed  Google Scholar 

  49. Xiao P, Wan Q, Liao T, Tu J, Zhang G, Sun Z (2021) Peptide nucleic acid-functionalized nanochannel biosensor for the highly sensitive detection of tumor exosomal microRNA. Anal Chem 93:10966–10973. https://doi.org/10.1021/acs.analchem.1c01898

    Article  CAS  PubMed  Google Scholar 

  50. Gao P, Wang D, Che C, Ma Q, Wu X, Chen Y, Xu H, Li X, Lin Y, Ding D, Lou X, Xia F (2021) Regional and functional division of functional elements of solid-state nanochannels for enhanced sensitivity and specificity of biosensing in complex matrices. Nat Protoc 16:4201–4226. https://doi.org/10.1038/s41596-021-00574-6

    Article  CAS  PubMed  Google Scholar 

  51. Liu L, Luo C, Zhang J, He X, Shen Y, Yan B, Huang Y, Xia F, Jiang L (2022) Synergistic effect of bio-inspired nanochannels: hydrophilic DNA probes at inner wall and hydrophobic coating at outer surface for highly sensitive detection. Small 18:2201925. https://doi.org/10.1002/smll.202201925

    Article  CAS  Google Scholar 

  52. Gao P, Ma Q, Ding D, Wang D, Lou X, Zhai T, Xia F (2018) Distinct functional elements for outer-surface anti-interference and inner-wall ion gating of nanochannels. Nat Commun 9:4557. https://doi.org/10.1038/s41467-018-06873-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu T, Wu X, Xu H, Ma Q, Du Q, Yuan Q, Gao P, Xia F (2021) Revealing ionic signal enhancement with probe grafting density on the outer surface of nanochannels. Anal Chem 93:13054–13062. https://doi.org/10.1021/acs.analchem.1c03010

    Article  CAS  PubMed  Google Scholar 

  54. Mao H, Ma Q, Xu H, Xu L, Du Q, Gao P, Xia F (2021) Exploring the contribution of charged species at the outer surface to the ion current signal of nanopores: a theoretical study. Analyst 146:5089–5094. https://doi.org/10.1039/d1an00826a

    Article  CAS  PubMed  Google Scholar 

  55. King S, Briggs K, Slinger R, Tabard-Cossa V (2022) Screening for group a streptococcal disease via solid-state nanopore detection of PCR amplicons. ACS Sens 7:207–214. https://doi.org/10.1021/acssensors.1c01972

    Article  CAS  PubMed  Google Scholar 

  56. Duleba D, Johnson RP (2022) Sensing with ion current rectifying solid-state nanopores. Curr Opin Electrochem 34:100989. https://doi.org/10.1016/j.coelec.2022.100989

    Article  CAS  Google Scholar 

  57. Zhang J, Zhang L, Li Z, Zhang Q, Li Y, Ying Y, Fu Y (2021) Nanoconfinement effect for signal amplification in electrochemical analysis and sensing. Small 17:2101665. https://doi.org/10.1002/smll.202101665

    Article  CAS  Google Scholar 

  58. Wu Y, Gooding JJ (2022) The application of single molecule nanopore sensing for quantitative analysis. Chem Soc Rev 51:3862–3885. https://doi.org/10.1039/d1cs00988e

    Article  CAS  PubMed  Google Scholar 

  59. Hu R, Tong X, Zhao Q (2020) Four aspects about solid-state nanopores for protein sensing: fabrication, sensitivity, selectivity, and durability. Adv Healthc Mater 9:2000933. https://doi.org/10.1002/adhm.202000933

    Article  CAS  Google Scholar 

  60. Lou X, Song Y, Liu R, Cheng Y, Dai J, Chen Q, Gao P, Zhao Z, Xia F (2019) Enzyme and AIEgens modulated solid-state nanochannels: in situ and noninvasive monitoring of H2O2 released from living cells. Small Methods 4:1900432. https://doi.org/10.1002/smtd.201900432

    Article  CAS  Google Scholar 

  61. Taniguchi M, Takei H, Tomiyasu K, Sakamoto O, Naono N (2022) Sensing the performance of artificially intelligent nanopores developed by integrating solid-state nanopores with machine learning methods. J Phys Chem C 126:12197–12209. https://doi.org/10.1021/acs.jpcc.2c02674

    Article  CAS  Google Scholar 

  62. Hayashida T, Tsutsui M, Murayama S, Nakada T, Taniguchi M (2021) Dielectric coatings for resistive pulse sensing using solid-state pores. ACS Appl Mater Interfaces 13:10632–10638. https://doi.org/10.1021/acsami.0c22548

    Article  CAS  PubMed  Google Scholar 

  63. Zhou J, Zlotnick A, Jacobson SC (2022) Disassembly of single virus capsids monitored in real time with multicycle resistive-pulse sensing. Anal Chem 94:985–992. https://doi.org/10.1021/acs.analchem.1c03855

    Article  CAS  PubMed  Google Scholar 

  64. Liu Y, Xu C, Chen X, Wang J, Yu P, Mao L (2018) Voltage-driven counting of phospholipid vesicles with nanopipettes by resistive-pulse principle. Electrochem Commun 89:38–42. https://doi.org/10.1016/j.elecom.2018.02.015

    Article  CAS  Google Scholar 

  65. Si W, Sha J, Sun Q, He Z, Wu L, Chen C, Yu S, Chen Y (2020) Shape characterization and discrimination of single nanoparticles using solid-state nanopores. Analyst 145:1657–1666. https://doi.org/10.1039/c9an01889a

    Article  CAS  PubMed  Google Scholar 

  66. Wang HW, Lu SM, Chen M, Long YT (2022) Optical-facilitated single-entity electrochemistry. Curr Opin Electrochem 34:100999. https://doi.org/10.1016/j.coelec.2022.100999

    Article  CAS  Google Scholar 

  67. Ding S, Liu C, Fu D, Shi G, Zhu A (2021) Coordination of ligand-protected metal nanoclusters and glass nanopipettes: conversion of a liquid-phase fluorometric assay into an enhanced nanopore analysis. Anal Chem 93:1779–1785. https://doi.org/10.1021/acs.analchem.0c04620

    Article  CAS  PubMed  Google Scholar 

  68. Cai S, Sze JY, Ivanov AP, Edel JB (2019) Small molecule electro-optical binding assay using nanopores. Nat Commun 10:1797. https://doi.org/10.1038/s41467-019-09476-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cai S, Pataillot-Meakin T, Shibakawa A, Ren R, Bevan CL, Ladame S, Ivanov AP, Edel JB (2021) Single-molecule amplification-free multiplexed detection of circulating microRNA cancer biomarkers from serum. Nat Commun 12:3515. https://doi.org/10.1038/s41467-021-23497-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ren R, Sun M, Goel P, Cai S, Kotov NA, Kuang H, Xu C, Ivanov AP, Edel JB (2021) Single-molecule binding assay using nanopores and dimeric NP conjugates. Adv Mater 33:2103067. https://doi.org/10.1002/adma.202103067

    Article  CAS  Google Scholar 

  71. Wang L, Ma Y, Wang L (2021) High selectivity sensing of bovine serum albumin: the combination of glass nanopore and molecularly imprinted technology. Biosens Bioelectron 178:113056. https://doi.org/10.1016/j.bios.2021.113056

    Article  CAS  PubMed  Google Scholar 

  72. Tang H, Wang H, Yang C, Zhao D, Qian Y, Li Y (2020) Nanopore-based strategy for selective detection of single carcinoembryonic antigen(CEA) molecules. Anal Chem 92:3042–3049. https://doi.org/10.1021/acs.analchem.9b04185

    Article  CAS  PubMed  Google Scholar 

  73. Wang H, Tang H, Yang C, Li Y (2019) Selective single molecule nanopore sensing of microRNA using PNA functionalized magnetic core-shell Fe3O4-Au nanoparticles. Anal Chem 91:7965–7970. https://doi.org/10.1021/acs.analchem.9b02025

    Article  CAS  PubMed  Google Scholar 

  74. Yi W, Xu C, Xiong T, Gao T, Yu P, He X, Mao L (2020) Label-free analysis of adsorbed protein heterogeneity on individual particles, based on single particle collision events. Electrochem Commun 111:106666. https://doi.org/10.1016/j.elecom.2020.106666

    Article  CAS  Google Scholar 

  75. Liu Y, Xu C, Gao T, Chen X, Wang J, Yu P, Mao L (2020) Sizing single particles at the orifice of a nanopipette. ACS Sens 5:2351–2358. https://doi.org/10.1021/acssensors.9b02520

    Article  CAS  PubMed  Google Scholar 

  76. Gao T, Gao X, Xu C, Wang M, Chen M, Wang J, Ma F, Yu P, Mao L (2021) Label-free resistance cytometry at the orifice of a nanopipette. Anal Chem 93:2942–2949. https://doi.org/10.1021/acs.analchem.0c04585

    Article  CAS  PubMed  Google Scholar 

  77. Gao T, Xu C, Chen M, Wang J, Mao L, Yu P (2022) Insights into surface charge of single particles at the orifice of a nanopipette. Anal Chem 94:8187–8193. https://doi.org/10.1021/acs.analchem.1c05579

    Article  CAS  PubMed  Google Scholar 

  78. Soozanipour A, Sohrabi H, Abazar F, Khataee A, Noorbakhsh A, Asadnia M, Taheri Kafrani A, Majidi MR, Razmjou A (2021) Ion selective nanochannels: from critical principles to sensing and biosensing applications. Adv Mater Technol 6:2000765. https://doi.org/10.1002/admt.202000765

    Article  CAS  Google Scholar 

  79. Ma T, Janot JM, Balme S (2020) Track-etched nanopore/membrane: from fundamental to applications. Small Methods 4:2000366. https://doi.org/10.1002/smtd.202000366

    Article  CAS  Google Scholar 

  80. Ma Q, Liu T, Xu R, Du Q, Gao P, Xia F (2021) Revealing the critical role of probe grafting density in nanometric confinement in ionic signal via an experimental and theoretical study. Anal Chem 93:1984–1990. https://doi.org/10.1021/acs.analchem.0c03090

    Article  CAS  PubMed  Google Scholar 

  81. Wang D, Qi G, Zhou Y, Zhang Y, Wang B, Hu P, Jin Y (2020) Single-cell ATP detection and content analyses in electrostimulusInduced apoptosis by functionalized glass nanopipette. Chem Commun 56:1561–1564. https://doi.org/10.1039/C9CC08889J

    Article  CAS  Google Scholar 

  82. Zhao XP, Cao J, Nie XG, Wang SS, Wang C, Xia XH (2017) Label-free monitoring of the thrombin-aptamer recognition reaction using an array of nanochannels coupled with electrochemical detection. Electrochem Commun 81:5–9. https://doi.org/10.1016/j.elecom.2017.05.018

    Article  CAS  Google Scholar 

  83. Zhang X, Zhang L, Li J (2019) Peptide-modified nanochannel system for carboxypeptidase B activity detection. Anal Chim Acta 1057:36–43. https://doi.org/10.1016/j.aca.2019.01.018

    Article  CAS  PubMed  Google Scholar 

  84. Shi L, Wang L, Ma X, Jalalah M, Alsareii SA, Gao T, Harraz FA, Li G (2021) Electrochemical trans-channel assay for efficient evaluation of tumor cell invasiveness. ACS Appl Mater Interfaces 13:17268–17275. https://doi.org/10.1021/acsami.1c01236

    Article  CAS  PubMed  Google Scholar 

  85. Zhang K, Xiong T, Wu F, Yue Q, Ji W, Yu P, Mao L (2020) Real-time and in-situ intracellular ATP assay with polyimidazolium brush-modified nanopipette. Sci China Chem 63:1004–1011. https://doi.org/10.1007/s11426-020-9715-x

    Article  CAS  Google Scholar 

  86. Hu P, Zhang Y, Wang D, Qi G, Jin Y (2021) Glutathione content detection of single cells under ingested doxorubicin by functionalized glass nanopores. Anal Chem 93:4240–4245. https://doi.org/10.1021/acs.analchem.0c05004

    Article  CAS  PubMed  Google Scholar 

  87. Guo J, Yang L, Xu H, Zhao C, Dai Z, Gao Z, Song Y (2019) Biomineralization-driven ion gate in TiO2 nanochannel arrays for cell H2S sensing. Anal Chem 91:13746–13751. https://doi.org/10.1021/acs.analchem.9b03119

    Article  CAS  PubMed  Google Scholar 

  88. Ran X, Qian H, Yan X (2021) Aptamer self-assembly-functionalized nanochannels for sensitive and precise detection of chloramphenicol. Anal Chem 93:14287–14292. https://doi.org/10.1021/acs.analchem.1c03396

    Article  CAS  PubMed  Google Scholar 

  89. Zhao X, Liu F, Hu W, Younis MR, Wang C, Xia X (2019) Biomimetic nanochannel-ionchannel hybrid for ultrasensitive and label-free detection of microRNA in cells. Anal Chem 91:3582–3589. https://doi.org/10.1021/acs.analchem.8b05536

    Article  CAS  PubMed  Google Scholar 

  90. Wang C, Fu Q, Wang X, Kong D, Sheng Q, Wang Y, Chen Q, Xue J (2015) Atomic layer deposition modified track-etched conical nanochannels for protein sensing. Anal Chem 87:8227–8233. https://doi.org/10.1021/acs.analchem.5b01501

    Article  CAS  PubMed  Google Scholar 

  91. Ma Q, Li Y, Wang R, Xu H, Du Q, Gao P, Xia F (2021) Towards explicit regulating-ion-transport: nanochannels with only function-elements at outer-surface. Nat Commun 12:1573. https://doi.org/10.1038/s41467-021-21507-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Huang Y, Xue H, Lou X, Xia F (2021) Precise measurement of single molecule and single cell based on nanopores/nanochannels’ charge transfer. Sci Bull 66:1599–1600. https://doi.org/10.1016/j.scib.2021.03.011

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Project from the Ministry of Science and Technology of China (2021YFE0191500), the National Natural Science Foundation of China (21875203), the Scientific Research Fund of Hunan Provincial Education Department (20A490), the Scientific Research Project of Colleges and Universities of the Guizhou Provincial Education Department (Youth Project) (2022396), and the Science and Technology Planning Project of the Science and Technology Bureau of Qianxinan Prefecture (2022-1-20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanping Zhang, Yebo Lu, Lanhua Yi or Xingzhu Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, W., Zhang, C., Zhang, Q. et al. Solid-State Nanopore/Nanochannel Sensing of Single Entities. Top Curr Chem (Z) 381, 13 (2023). https://doi.org/10.1007/s41061-023-00425-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-023-00425-w

Keywords

Navigation