Skip to main content
Log in

Nano-mechanical properties and microstructure of UFG brass tubes processed by parallel tubular channel angular pressing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The production of the ultrafine-grained brass tubes was carried out by multi-pass parallel tubular channel angular pressing (PTCAP) as a severe plastic deformation process. In addition to that, the microstructural and nano-mechanical features were investigated by EBSD and Nanoindentation for 0, 1, and 3 passes in a comparable mode. The elastic-plastic and micro scratch behavior were analyzed to show the enhanced features. Based on the obtained results, Young’s modulus and hardness of the specimens shifted to 1.62 and 1.7 times of the coarse-grained counterpart after the third pass respectively. The effects of the number of passes on the grain refinement were also investigated to detect the applied changes through each step of the PTCAP experimental procedures. Moreover, based on the obtained results from EBSD, the grain size of 1 and 3 pass samples were refined to 780 and 590 nm from its initial size of 75 µm. The fraction of the high-angle grain boundaries was increased from 30% in pass 1 to 66% in pass 3 of the PTCAP process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).

    Article  Google Scholar 

  2. M. Haouaoui, I. Karaman, K. Harwig, and H. Maier, Metall. Mater. Trans. A 35, 2935 (2004).

    Article  Google Scholar 

  3. M. S. Soliman, E. A. El-Danaf, and A. A. Almajid, Mat. Sci. Eng. A 532, 120 (2012).

    Article  Google Scholar 

  4. D. Jafarlou, E. Zalnezhad, M. Ezazi, N. Mardi, and M. Hassan, Mater. Design 87, 553 (2015).

    Article  Google Scholar 

  5. A. S. Agena, J. Mater. Process. Tech. 209, 856 (2009).

    Article  Google Scholar 

  6. S. Lee, J. Mater. Process. Tech. 201, 441 (2008).

    Article  Google Scholar 

  7. H. Matsunoshita, K. Edalati, M. Furui, and Z. Horita, Mat. Sci. Eng. A 640, 443 (2015).

    Article  Google Scholar 

  8. S. Khoramkhorshid, M. Alizadeh, A. H. Taghvaei, and S. Scudino, Mater. Design 90, 137 (2016).

    Article  Google Scholar 

  9. M. Mohebbi and A. Akbarzadeh, Mat. Sci. Eng. A 528, 180 (2010).

    Article  Google Scholar 

  10. L. Tóth, M. Arzaghi, J. Fundenberger, B. Beausir, O. Bouaziz, and R. Arruffat-Massion, Scripta Mater. 60, 175 (2009).

    Article  Google Scholar 

  11. F. Djavanroodi, M. Daneshtalab, and M. Ebrahimi, Mat. Sci. Eng. A 535, 115 (2012).

    Article  Google Scholar 

  12. G. Faraji, M. Mashhadi, and H. Kim, Mat. Sci. Eng. A 528, 4312 (2011).

    Article  Google Scholar 

  13. G. Faraji, M. Mashhadi, A. Bushroa, and A. Babaei, Mat. Sci. Eng. A 563, 193 (2013).

    Article  Google Scholar 

  14. M. Mesbah, G. Faraji, and A. Bushroa, Met. Mater. Int. 22, 288 (2016).

    Article  Google Scholar 

  15. J. Su, W. Guo, L. Kecskes, S. Mathaudhu, and Q. Wei, Mat. Sci. Eng. A 597, 279 (2014).

    Article  Google Scholar 

  16. M. Haghshenas and R. Klassen, Mat. Sci. Eng. A 572, 91 (2013).

    Article  Google Scholar 

  17. B. Backes, K. Durst, and M. Goeken, Philos. Mag. 86, 5541 (2006).

    Article  Google Scholar 

  18. M. Haghshenas, J. Wood, and R. Klassen, Mat. Sci. Eng. A 552, 376 (2012).

    Article  Google Scholar 

  19. G. Faraji, A. Babaei, M. M. Mashhadi, and K. Abrinia, Mater. Lett. 77, 82 (2012).

    Article  Google Scholar 

  20. H. Sanati, F. Reshadi, G. Faraji, N. Soltani, and E. Zalnezhad, Proc. Inst. Mech. Eng. B J. Eng. Manuf. 229, 953 (2014).

    Article  Google Scholar 

  21. V. Tavakkoli, M. Afrasiab, G. Faraji, and M. Mashhadi, Mat. Sci. Eng. A 625, 50 (2015).

    Article  Google Scholar 

  22. M. Afrasiab, G. Faraji, V. Tavakkoli, M. Mashhadi, and A. Bushroa, Mat. Sci. Eng. A 599, 141 (2014).

    Article  Google Scholar 

  23. G. Faraji, S. Roostae, A. S. Nosrati, J. Y. Kang, and H. S. Kim, Metall. Mater. Trans. A 46, 1805 (2015).

    Article  Google Scholar 

  24. ISO-14577-1 Metallic Materials -Instrumented Indentation Test for Hardness and Materials Parameters Geneva, Switzerland (2002).

  25. I. 14577 Metallic Materials -Instrumented Indentation Test for Hardness and Materials Parameter, Geneva, Switzerland (2002).

  26. W. C. Oliver and G. M. Pharr, J. Mater. Res. 19, 3 (2004).

    Article  Google Scholar 

  27. S. Xia and J. Wang, Mater. Trans. 51, 36 (2010).

    Article  Google Scholar 

  28. M. Afrasiab, G. Faraji, V. Tavakkoli, M. Mashhadi, and K. Dehghani, T. Indian. I. Metals. 68, 873 (2015).

    Article  Google Scholar 

  29. D. Tabor, Proc. R. Soc. Lond. A 192, 247 (1948).

    Article  Google Scholar 

  30. W. C. Oliver and G. M. Pharr, J. Mater. Res. 19, 3 (2004).

    Article  Google Scholar 

  31. B. J. Briscoe, L. Fiori, and E. Pelillo, J. Phys. D: Appl. Phys. 31, 2395 (1998).

    Article  Google Scholar 

  32. A. Karimzadeh and M. R. Ayatollahi, Polym. Test. 31, 828 (2012).

    Article  Google Scholar 

  33. Y.-T. Cheng and C.-M. Cheng, Mat. Sci. Eng. R 44, 91 (2004).

    Article  Google Scholar 

  34. W. Kim, C. An, Y. Kim, and S. Hong, Scripta Mater. 47, 39 (2002).

    Article  Google Scholar 

  35. C. Xu, M. Furukawa, Z. Horita, and T. G. Langdon, Acta Mater. 51, 6139 (2003).

    Article  Google Scholar 

  36. F. Salimyanfard, M. R. Toroghinejad, F. Ashrafizadeh, and M. Jafari, Mat. Sci. Eng. A 528, 5348 (2011).

    Article  Google Scholar 

  37. Y. Tham, M. Fu, H. Hng, Q. Pei, and K. Lim, Mater. Manuf. Process. 22, 819 (2007).

    Article  Google Scholar 

  38. E. El-Danaf, M. Soliman, A. Almajid, and M. El-Rayes, Mat. Sci. Eng. A 458, 226 (2007).

    Article  Google Scholar 

  39. G. Faraji, S. Roostae, A. S. Nosrati, J. Kang, and H. Kim, Metall. Mater. Trans. A 46, 1805 (2015).

    Article  Google Scholar 

  40. Y. Zhao, X. Liao, Y. Zhu, Z. Horita, and T. Langdon, Mat. Sci. Eng. A 410, 188 (2005).

    Article  Google Scholar 

  41. Y. Zhao, Y. Zhu, X. Liao, Z. Horita, and T. G. Langdon, Mat. Sci. Eng. A 463, 22 (2007).

    Article  Google Scholar 

  42. A. Rafieerad, A. Bushroa, B. Nasiri-Tabrizi, J. Vadivelu, S. Baradaran, M. A. Zavareh, et al., Mater. Design (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohsen Mesbah, Ghader Faraji or A. R. Bushroa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesbah, M., Fadaeifard, F., Karimzadeh, A. et al. Nano-mechanical properties and microstructure of UFG brass tubes processed by parallel tubular channel angular pressing. Met. Mater. Int. 22, 1098–1107 (2016). https://doi.org/10.1007/s12540-016-6152-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-6152-0

Keywords

Navigation