Skip to main content
Log in

Validity of the critical thickness of steel for volume controlled diffusion during measurement of electrochemical hydrogen permeation

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In the electrochemical hydrogen permeation measurement, the rate-determining step can be governed by either bulk diffusion or surface reaction depending primarily on the thickness of steel membrane. In order to validate the critical thickness for the volume-controlled hydrogen atom transport in the permeation test under cathodic polarization condition, the sheet-type thin steel membrane with various thicknesses in the range from 0.5 mm to 2 mm is evaluated. The experimental results demonstrate that the permeation flux evaluated under cathodic polarization is inversely proportional to the steel thickness down to 0.5 mm. Based on the verified membrane thickness for the volume-controlled diffusion, a comparison of hydrogen diffusivity with respect to microstructure of the ferritic steel is discussed. It clearly indicates that the increase in fraction of pearlite and bainite in the microstructure contributes effectively to slower diffusion kinetics due mainly to the hydrogen trapping at various trap sites in the microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. V. Devanathan and Z. Stachurski, Proc. R. Soc. London, Ser. A 270, 90 (1962).

    Article  Google Scholar 

  2. J. Kittel, F. Ropital, and J. Pellier, Proc. of the NACE International Conference, p.08409 Houston, TX, USA (1998).

    Google Scholar 

  3. ISO standard 17081, ISO, Switzerland (2004).

    Google Scholar 

  4. G. T. Park, S. U. Koh, H. G. Jung, and K. Y. Kim, Corrosion Science 50, 1865 (2008).

    Article  Google Scholar 

  5. T. Zakroczymski, Electrochim. Acta 51, 2261 (2006).

    Article  Google Scholar 

  6. S. H. Wang, W. C. Luu, K. F. Ho, and J. K. Wu, Mater. Chem. Phys. 77, 447 (2002).

    Article  Google Scholar 

  7. S. Frappart, X. Feaugas, J. Creus, F. Thebault, L. Delattre, and H. Marchebois, Mat. Sci. Eng. A 534, 384 (2012).

    Article  Google Scholar 

  8. W. C. Luu and J. K. Wu, Corros. Sci. 38, 239 (1996).

    Article  Google Scholar 

  9. M. Kurkela, G. S. Frankel, and R. M. Latanision, Scripta Mater. 16, 455 (1982).

    Article  Google Scholar 

  10. A. M. Brass and J. Chene, Mat. Sci. Eng. A 242, 210 (1998).

    Article  Google Scholar 

  11. NACE standard TM0284, NACE International, Houston, TX (2003).

    Google Scholar 

  12. S. J. Kim and K. Y. Kim, Scripta Mater.66, 1069 (2012).

    Article  Google Scholar 

  13. S. J. Kim, D. W. Yun, H. G. Jung, and K. Y. Kim, J. Electrochem. Soc. 161 (12), E173 (2014).

    Article  Google Scholar 

  14. S. J. Kim, H. G. Jung, and K. Y. Kim, Electrochim. Acta 78, 139 (2012).

    Article  Google Scholar 

  15. H. M. Ha, J. H. Ai, and J. R. Scully, Corrosion 70, 166 (2014).

    Article  Google Scholar 

  16. S. J. Kim, D. W. Yun, D. W. Suh, and K. Y. Kim, Electrochem. Commun. 24, 112 (2012).

    Article  Google Scholar 

  17. Y. D. Han, H. Y. Jing, and L. Y. Xu, Mater. Chem. Phys. 132, 216 (2012).

    Article  Google Scholar 

  18. A. J. Kumnick and H. H. Johnson, Metall. Trans. 5, 1199 (1974).

    Article  Google Scholar 

  19. Y. Huang, A. Nakajima, A. Nishikata, and T. Tsuru, ISIJ International 43, 548 (2003).

    Article  Google Scholar 

  20. S. Wach, A. P. Miodownik, and J. Mackowiak, Corros. Sci. 6, 271 (1966).

    Article  Google Scholar 

  21. H. Lukito and Z. S. Smialowska, Corros. Sci. 39, 2151 (1997).

    Article  Google Scholar 

  22. D. L. Johnson, G. Krauss, J. K. Wu, and K. P. Tang, Metall. Trans. 18A, 717 (1987).

    Article  Google Scholar 

  23. K. D. Chang, J. L. Gu, H. S. Fang, Z. G. Yang, B. Z. Bai, and W. Z. Zhang, ISIJ International 41, 1397 (2001).

    Article  Google Scholar 

  24. J.-H. Gye and J.-Y. Lee, J. Mater. Sci. 18, 271 (1983).

    Article  Google Scholar 

  25. G. R. Speich and W. C. Leslie, Metall. Trans. 3, 1043 (1972).

    Article  Google Scholar 

  26. S. Serna, H. Martínez, S. Y. López, J. G. González-Rodríguez, and J. L. Albarrán, Int. J. Hydrogen. Energ. 30, 1333 (2005).

    Article  Google Scholar 

  27. M. I. Luppo and J. O. Garcia, Corros. Sci. 32, 1125 (1991).

    Article  Google Scholar 

  28. H.-Y. Liou, R.-I. Shieh, F.-I. Wei, and S.-C. Wang, Corrosion 49, 389 (1993).

    Article  Google Scholar 

  29. W. K. Kim, S. U. Koh, B. Y. Yang, and K. Y. Kim, Corros. Sci. 50, 3336 (2008).

    Article  Google Scholar 

  30. W. K. Kim, H. G. Jung, G. T. Park, S. U. Koh, and K. Y. Kim, Scripta Mater. 62, 195 (2010).

    Article  Google Scholar 

  31. M. Garet, A. M. Brass, C. Haut, and F. G. Solana, Corros. Sci. 40, 1073 (1998).

    Article  Google Scholar 

  32. D. S. Bae, C. E. Sung, H. J. Bang, S. P. Lee, J. K. Lee, I. S. Son, Y. R. Cho, U. B. Baek, and S. H. Nahm, Met. Mater. Int. 20, 653 (2014).

    Article  Google Scholar 

  33. J. H. Yoo, K. S. Yun, and R. S. Kalubarme, Met. Mater. Int. 20, 619 (2014).

    Article  Google Scholar 

  34. J. K. Kwon, D. H. Ahn, D. H. Jeong, Y. J. Kim, N. S. Woo, and S. S. Kim, Korean J. Met. Mater. 52, 757 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.J., Seo, H.S. & Kim, K.Y. Validity of the critical thickness of steel for volume controlled diffusion during measurement of electrochemical hydrogen permeation. Met. Mater. Int. 21, 666–672 (2015). https://doi.org/10.1007/s12540-015-4637-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4637-x

Keywords

Navigation