Skip to main content
Log in

Microwave-Assisted ZrSiO2 Catalysed Synthesis, Characterization and Computational Study of Novel Spiro[Indole-Thiazolidines] Derivatives as Anti-tubercular Agents

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

In the current investigation, we prepared a series of novel spiro[indole-thiazolidines] derivatives (5a5h) from 5-substituted isatin derivatives and thioglycolic acid (TGA) with ZrSiO2 as an efficient catalyst under microwave irradiation. The significant merits of this protocol have some significant merits such as simplicity in operation, simple, efficient workup, good practical yields of product and the employment of recyclable catalyst. All the new synthesized scaffold has been well characterized by various spectroscopic methods and elemental analysis. All the spiro scaffolds were subjected to in vitro anti-mycobacterial activity against the Mycobacterium tuberculosis (H37Rv) strain. We have carried out molecular docking study of our synthesized compounds. We also calculated theoretically ADME–Tox parameters for synthesized compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zumla A, George A, Sharma V, Herbert N (2013) WHO’s 2013 global report on tuberculosis: successes, threats, and opportunities. Lancet 382(9907):1765–1767

    Article  PubMed  Google Scholar 

  2. Yew WW, Leung CC (2008) Update in tuberculosis 2007. Am J Respir Crit Care Med 177(5):479–485

    Article  CAS  PubMed  Google Scholar 

  3. Ballell L, Field RA, Duncan K, Young RJ (2005) New small-molecule synthetic antimycobacterials. Antimicrob Agents Chemother 49(6):2153–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. García A, Bocanegra-García V, Palma-Nicolás JP, Rivera G (2012) Recent advances in antitubercular natural products. Eur J Med Chem 49:1–23

    Article  PubMed  Google Scholar 

  5. Kappe CO, Stadler A, Dallinger D (2012) Microwaves in organic and medicinal chemistry. Wiley, London

    Book  Google Scholar 

  6. Borad MA, Bhoi MN, Parmar JA, Patel HD (2015) Microwave assisted synthesis of novel N-(benzo [d] thiazol-2-yl)-2-((2,4′-dioxospiro [indoline-3,2′-thiazolidin]-3′-yl) amino) acetamide derivatives as potent antibacterial agents. Int Lett Chem Phys Astron 53:122

    Article  Google Scholar 

  7. Mohan SB, Kumar BR, Dinda SC, Naik D, Seenivasan SP, Kumar V, Rana DN, Brahmkshatriya PS (2012) Microwave-assisted synthesis, molecular docking and antitubercular activity of 1, 2, 3, 4-tetrahydropyrimidine-5-carbonitrile derivatives. Bioorg Med Chem Lett 22(24):7539–7542

    Article  CAS  PubMed  Google Scholar 

  8. Marti C, Carreira EM (2003) Construction of spiro [pyrrolidine-3, 3′-oxindoles]—recent applications to the synthesis of oxindole alkaloids. Eur J Org Chem 2003(12):2209–2219

    Article  Google Scholar 

  9. Venkatesan H, Davis MC, Altas Y, Snyder JP, Liotta DC (2001) Total synthesis of SR 121463 A, a highly potent and selective vasopressin V2 receptor antagonist. J Org Chem 66(11):3653–3661

    Article  CAS  PubMed  Google Scholar 

  10. Reifscheider W, Ershadi B, Dripps J, Barron J (1992) In US Patent 5075293, 1991, Chem. Abstr, p 129249f

  11. Bhoot D, Khunt R, Shankhavara V, Parekh H (2006) Synthesis of some new heterocyclic compounds with potential biological activity. J Sci I R Iran 17(4):323–325

    CAS  Google Scholar 

  12. Kutschy P, Suchý M, Monde K, Harada N, Marušková R, Čurillová Z, Dzurilla M, Miklošová M, Mezencev R, Mojžiš J (2002) Spirocyclization strategy toward indole phytoalexins. The first synthesis of (±)-1-methoxyspirobrassinin, (±)-1-methoxyspirobrassinol, and (±)-1-methoxyspirobrassinol methyl ether. Tetrahedron Lett 43(52):9489–9492

    Article  CAS  Google Scholar 

  13. Banting L (1996) Inhibition of aromatase. Prog Med Chem 33:147–184

    Article  CAS  PubMed  Google Scholar 

  14. Srivastava S, Srivastava S, Srivastava S (2001) Synthesis of 5‐arylidene‐2‐aryl‐3‐(2‐chlorophenothiazinoacetamidyl)‐1,3‐thiazolidin‐4‐ones as antifungal and anticonvulsant agents. ChemInform 32(17)

  15. Sharma R, Kumar D (2000) Synthesis of some new thiazolidin-4-ones as possible antimicrobial agents. J Indian Chem Soc 77(10):492–493

    CAS  Google Scholar 

  16. Holmes CP, Chinn JP, Look GC, Gordon EM, Gallop MA (1995) Strategies for combinatorial organic synthesis: solution and polymer-supported synthesis of 4-thiazolidinones and 4-metathiazanones derived from amino acids. J Org Chem 60(22):7328–7333

    Article  CAS  Google Scholar 

  17. Srivastava T, Haq W, Katti S (2002) Carbodiimide mediated synthesis of 4-thiazolidinones by one-pot three-component condensation. Tetrahedron 58(38):7619–7624

    Article  CAS  Google Scholar 

  18. Gududuru V, Nguyen V, Dalton JT, Miller DD (2004) Efficient microwave enhanced synthesis of 4-thiazolidinones. Synlett 13:2357–2358

    Google Scholar 

  19. Bremner DH (1994) Recent advances in organic synthesis utilizing ultrasound. Ultrason Sonochem 1(2):S119–S124

    Article  CAS  Google Scholar 

  20. Eynde JJV, Mutonkole K, Van Haverbeke Y (2001) Surfactant-assisted organic reactions in water. Effect of ultrasound on condensation reactions between active methylene compounds and arylaldehydes. Ultrason Sonochem 8(1):35–39

    Article  Google Scholar 

  21. Bhoi MN, Borad MA, Pithawala EA, Modi S, Patel HD (2015) Synthesis of N’-(7-chloroquinolin-4-yl)-6-methyl-2-oxo-4-phenyl-1, 2, 3, 4-tetrahydropyrimidine-5-carbohydrazide derivatives as potent antibacterial agents. Int Lett Chem Phys Astron 56:82

    Article  Google Scholar 

  22. Patel NB, Patel JC (2010) Synthesis and antimicrobial activity of 3-(1, 3, 4-oxadiazol-2-yl) quinazolin-4 (3H)-ones. Sci Pharm 78(2):171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Akhaja TN, Raval JP (2012) Design, synthesis and in vitro evaluation of tetrahydropyrimidine–isatin hybrids as potential antitubercular and antimalarial agents. Chin Chem Lett 23(7):785–788

    Article  CAS  Google Scholar 

  24. Desai N, Shukla H, Thaker K (1984) Some new 2-aryl-3-isonicotamido-4-thiazolidinones and their 5-carboxymethyl homologs as potential antitubercular and antibacterial agent. J Indian Chem Soc 61(3):239–240

    CAS  Google Scholar 

  25. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44(1):235–249

    Article  CAS  PubMed  Google Scholar 

  26. Lu S-H, Wu JW, Liu H-L, Zhao J-H, Liu K-T, Chuang C-K, Lin H-Y, Tsai W-B, Ho Y (2011) The discovery of potential acetylcholinesterase inhibitors: a combination of pharmacophore modeling, virtual screening, and molecular docking studies. J Biomed Sci 18(8):22

    Google Scholar 

  27. Rozwarski DA, Grant GA, Barton DH, Jacobs WR, Sacchettini JC (1998) Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279(5347):98–102

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors (MNB and MAB) are very thankful to UGC-BSR for financial support and other institutes for given that amenities for our research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayuri A. Borad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borad, M.A., Bhoi, M.N., Rathwa, S.K. et al. Microwave-Assisted ZrSiO2 Catalysed Synthesis, Characterization and Computational Study of Novel Spiro[Indole-Thiazolidines] Derivatives as Anti-tubercular Agents. Interdiscip Sci Comput Life Sci 10, 411–418 (2018). https://doi.org/10.1007/s12539-016-0195-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-016-0195-2

Keywords

Navigation