Skip to main content
Log in

Discovery of Novel GSK-3β Inhibitors Using Pharmacophore and Virtual Screening Studies

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Glycogen synthase kinase-3β (GSK-3β) is a kinase family enzyme and an emerged target for the treatment of various diseases. A total of 23 structurally diverse flavonoid inhibitors were used to generate pharmacophore models using HypoGen algorithm. The hypotheses Hypo1 was considered as a best model which consists of three features: one hydrophobic and two aromatic ring features. The Hypo1 pharmacophore model was employed as a query to screen NCI and natural compound databases to discover novel potential lead compounds. In addition, molecular docking studies were carried out with 596 compounds from screening studies. NSC230353, NSC66454, NSC159593, and NSC156759 from NCI database and STOCK1N-81808, ZINC02159818, ZINC04042470, and ZINC72326235 from natural compound database were identified as potential GSK-3β inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Embi N, Rylatt DB, Cohen P (1980) Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 107:519–527

    Article  CAS  PubMed  Google Scholar 

  2. Woodgett JR (1990) Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J 9:2431–2438

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Woodgett JR (1991) cDNA cloning and properties of glycogen synthase kinase-3. Methods Enzymol 200:564–577

    Article  CAS  PubMed  Google Scholar 

  4. Eldar-Finkelman H (2002) Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol Med 8:126–132

    Article  CAS  PubMed  Google Scholar 

  5. Erdal E, Ozturk N, Cagatay T, Eksioglu-Demiralp E, Ozturk M (2005) Lithium-mediated downregulation of PKB/Akt and cyclin E with growth inhibition in hepatocellular carcinoma cells. Int J Cancer 115:903–910

    Article  CAS  PubMed  Google Scholar 

  6. Mazor M, Kawano Y, Zhu H, Waxman J, Kypta RM (2004) Inhibition of glycogen synthase kinase-3 represses androgen receptor activity and prostate cancer cell growth. Oncogene 23:7882–7892

    Article  CAS  PubMed  Google Scholar 

  7. Ougolkov AV, Fernandez-Zapico ME, Bilim VN, Smyrk TC, Chari ST, Billadeau DD (2006) Aberrant nuclear accumulation of glycogen synthase kinase-3β in human pancreatic cancer: association with kinase activity and tumor dedifferentiation. Clin Cancer Res 12:5074–5081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ougolkov AV, Fernandez-Zapico ME, Savoy DN, Urrutia RA, Billadeau DD (2005) Glycogen synthase kinase-3β participates in nuclear factor kappaB-mediated gene transcription and cell survival in pancreatic cancer cells. Cancer Res 65:2076–2081

    Article  CAS  PubMed  Google Scholar 

  9. Shakoori A, Ougolkov A, Yu ZW, Zhang B, Modarressi MH, Billadeau DD, Mai M, Takahashi Y, Minamoto T (2005) Deregulated GSK-3beta activity in colorectal cancer: its association with tumor cell survival and proliferation. Biochem Biophys Res Commun 334:1365–1373

    Article  CAS  PubMed  Google Scholar 

  10. Hernandez F, Avila J (2008) The role of glycogen synthase kinase 3 in the early stages of Alzheimers’ disease. FEBS Lett 582:3848–3854

    Article  CAS  PubMed  Google Scholar 

  11. Eldar-Finkelman H, Schreyer SA, Shinohara MM, LeBoeuf RC, Krebs EG (1999) Increased glycogen synthase kinase-3 activity in diabetes- and obesity-prone C57BL/6J mice. Diabetes 48:1662–1666

    Article  CAS  PubMed  Google Scholar 

  12. Wagman AS, Johnson KW, Bussiere DE (2004) Discovery and development of GSK-3 inhibitors for the treatment of type 2 diabetes. Curr Pharm Des 10:1105–1137

    Article  CAS  PubMed  Google Scholar 

  13. Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116:1175–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berg S, Hellberg S (2003) Preparation of N-(4-methoxybenzyl)-N0- (5-nitro-1,3-thiazol-2-yl)urea for treating conditions associated with glycogen-synthase kinase-3 (GSK-3). WO/2003/004478

  15. Gentles RG, Hu S, Dubowchik GM (2009) Recent advances in the discovery of GSK-3 inhibitors and a perspective on their utility for the treatment of Alzheimer’s disease. Annu Rep Med Chem 44:3–26

    Article  CAS  Google Scholar 

  16. Khanfar MA, Asal BA, Mudit M, Kaddoumi A, El Sayed KA (2009) Marine natural-derived inhibitors of glycogen synthase kinase-3β phenylmethylenehydantoins: in vitro and in vivo activities, pharmacophore modeling. Bioorg Med Chem 17:6032–6039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Martinez A, Alonso M, Castro A, Perez C, Moreno FJ (2002) Firstnon-ATP competitive glycogen synthase kinase-3beta (GSK-3beta)inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s disease. J Med Chem 45:1292–1299

    Article  CAS  PubMed  Google Scholar 

  18. Martinez A, Alonso M, Castro A, Dorronsoro I, Gelpi JL, Luque FJ, Perez C, Moreno FJ (2005) SAR and 3D-QSAR studies on thiadiazolidinone derivatives: exploration of structural requirements for glycogen synthase kinase-3 inhibitors. J Med Chem 48:7103–7112

    Article  CAS  PubMed  Google Scholar 

  19. Nuss JM, Harrison SD, Ring DB, Boyce RS, Brown SP, Goff D, Johnson K, Pfister KB, Ramurthy S, Renhowe PA, Seely L, Subramanian S, Wagman AS, Zhou XA (1999) Inhibitors of glycogen synthase kinase-3. WO/1999/065897

  20. O’Neill DJ, Shen L, Prouty C, Conway BR, Westover L, Xu JZ, Zhang HC, Maryanoff BE, Murray WV, Demarest KT, Kuo GH (2004) Design, synthesis, and biological evaluation of novel 7-azaindolyl-heteroaryl-maleimides as potent and selective glycogen synthase kinase-3β (GSK-3β) inhibitors. Bioorg Med Chem 12:3167–3185

    PubMed  Google Scholar 

  21. Olesen PH, Sorensen AR, Urso B, Kurtzhals P, Ehrbar U, Bowler AN, Hansen BF (2003) Synthesis and in vitro characterization of 1-(4-aminofurazan-3-yl)-5-dialkylaminomethyl-1H-[1,2,3]triazole-4-carboxylic acid derivatives. A new class of selective GSK-3 inhibitors. J Med Chem 46:3333–3341

    Article  CAS  PubMed  Google Scholar 

  22. Witherington J (2006) 3-Amino pyrazoles as potent and selective glycogen kinase synthase 3 (GSK-3) inhibitors. In: Martinez A, Castro A, Medina M (eds) Glycogen synthase kinase-3 (GSK-3) and its inhibitors: drug discovery and development. Wiley, Hoboken, pp 281–305

    Chapter  Google Scholar 

  23. Meijer L, Flajolet M, Greengard P (2004) Pharmacological inhibitors of glycogen synthase kinase-3. Trends Pharmacol Sci 25:471–480

    Article  CAS  PubMed  Google Scholar 

  24. Yong SY (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15:444–450

    Article  Google Scholar 

  25. Johnson JL, Rupasinghe SG, Stefani F, Schuler MA, de Mejia EG (2011) Citrus flavonoids luteolin, apigenin, and quercetin inhibit glycogen synthase kinase-3β enzymatic activity by lowering the interaction energy within the binding cavity. J Med Food 14:325–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu H, Chang DJ, Baratte B, Meijer L, Schulze-Gahmen U (2005) Crystal structure of a human cyclin-dependent kinase 6 complex with a flavonol inhibitor, fisetin. J Med Chem 48:737–743

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen TB, Lozach O, Surpateanu G, Wang Q, Retailleau P, Iorga BI, Meijer L, Guéritte F (2012) Synthesis, biological evaluation, and molecular modeling of natural and unnatural flavonoidal alkaloids, inhibitors of kinases. J Med Chem 55:2811–2819

    Article  CAS  PubMed  Google Scholar 

  28. Li H, Sutter J, Hoffmann R (2000) HypoGen: an automated system for generating predictive 3D pharmacophore models. In: Güner OF (ed) Pharmacophore perception, development, and use in drug design, vol 2. International University Line, La Jolla, CA, pp 173–189

    Google Scholar 

  29. Debnath AK (2002) Pharmacophore mapping of a series of 2,4-diamino-5-deazapteridine inhibitors of mycobacterium avium complex dihydrofolatereductase. J MedChem 45:41–53

    CAS  Google Scholar 

  30. Venkatachalam CM, Jiang X, Oldfield T, Waldman M (2003) LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model 21:289–307

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Santhana Raj.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1

Table 1 provides statistical parameters and Table 2–7 provides docking score, H-bond interactions and length, amino acid residues of lead compounds (PDF 689 kb)

Supplementary material 2

Chemical structures of 23 training/test set compounds applied to pharmacophore generation (PPTX 319 kb)

Supplementary material 3

Hypo 1 mapped to (a) most active compound Flavopiridol (IC50 0.28 μM), and also mapped to (b) low active compound Naringin (IC50 100 μM) (PPTX 387 kb)

Supplementary material 4

The difference in costs between the HypoGen runs and Fischer’s randomization runs, 95 % confidence level selected (PPTX 85 kb)

Supplementary material 5

The Pharmacophore overlay of hit compounds a NSC230353 b NSC66454 c NSC159593 d NSC156759 e STOCK1N-81808 f ZINC02159818 g ZINC04042470 h ZINC72326235 (PPTX 1625 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakrishnan, N., Raj, J.S. & Kandakatla, N. Discovery of Novel GSK-3β Inhibitors Using Pharmacophore and Virtual Screening Studies. Interdiscip Sci Comput Life Sci 8, 303–311 (2016). https://doi.org/10.1007/s12539-015-0100-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-015-0100-4

Keywords

Navigation