Skip to main content
Log in

Insilico model for prediction of lateral gene transfer in Rhodopseudomonas paulistris

  • Original Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Study of evolutionary phenomenon is of great interest to biologists in discovering the secrets of life. The presence of reticulation events due to lateral gene transfer (LGT) among species poses new challenges for such evolutionary studies. In this paper an attempt has been made to develop an insilico model to predict LGT in the Rhodopseudomonas paulistris. Neighbour Joining method is employed to generate phylogenetic tree of 26 sequences of Alphaproteobacteria and one sequence of Cyanobacteria used as an out group. Then Least Squares approach is employed to predict the reticulation branches. Three reticulation branches were detected among these 27 sequences. The lateral gene transfer was predicted between Rhodopseudomonas paulistris 99 D and Rhodobacter sphaeroides, Rhodopseudomonas paulistris HMD 88 and Bradyrhizobium japonicum USDA and Bradyrhizobium japonicum USDA and Rhodobacter blasticus. The results obtained are in agreement with the results obtained by earlier research workers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andam, C.P., Gogarten, J.P. 2011. Biased gene transfer in microbial evolution. Nature Reviews Microbiology 9(7), 543–555.

    Article  CAS  PubMed  Google Scholar 

  2. Beiko, R.G., et al. 2005. Highways of gene sharing in prokaryotes. Proc Natl Acad Sci, 102(40), 14332–14337.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Buneman, P. 1971, The recovery of the trees from measures of dissimilarity, mathematics in archaeological and historical sciences, Edinburgh University Press, 387–395.

    Google Scholar 

  4. BÄurgmann, H. et al. 2004. New molecular screening tools for analysis of free-living diazotrophs in soil. Appl Environ Microbiol 70(1), 240–247.

    Article  Google Scholar 

  5. Cantera, J.J.L, et al. 2004. The nitrogen-fixing gene of Rhodopsedomonas palustris: a case of lateral gene transfer, Microbiology, 150, 2237–2246.

    Article  CAS  PubMed  Google Scholar 

  6. Cheng, Q. 2008. Perspectives in biological nitrogen fixation research. Journal of Integrative Plant Biology, 50(7), 784–796.

    Article  Google Scholar 

  7. Chouhan, U., Pardasani, K.R., 2010. A linear programming approach to study phylogenetic networks in honeybee, Online Journal of Bioinformatics, 11(1), 72–82.

    Google Scholar 

  8. Gaby, J.C., Buckley, D.H., 2012. A comprehensive evaluation of PCR Primers to amplify the nifH gene of nirogenase. PLOS One 7(7).

    Google Scholar 

  9. Gupta, R.S., Mok, A. 2007. Phylogenomics and signature proteins for the alpha Proteobacteria and its main groups. BMC Microbiol. Nov 28; 7(1), 106.

    Article  Google Scholar 

  10. http://genome.jgi-psf.org/rhopa/rhopa.home.html Rhodopseudomonas palustris CGA009 Joint Genome Project Institute.

  11. http://www.ncbi.nlm.nih.gov/nucleotide/

  12. Katherina, J., et al. 2006. Quantitative exploration of the occurrence of lateral gene transfer by using nitrogen fixation genes as a case study Proc Natl Acad Sci, 103(25), 9584–9589.

    Article  Google Scholar 

  13. Koonin, E.V., et al. 2001. Annu. Rev. Microbiol. 55, 709–742.

    Article  CAS  PubMed  Google Scholar 

  14. Laguerre, G., et al. 2001. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147(4), 981–993.

    CAS  PubMed  Google Scholar 

  15. Larimer, et al., 2004. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nature Biotechnology, 22, 55.

    Article  CAS  PubMed  Google Scholar 

  16. Legendre, P., Makarenkov, V., 2002. Reconstruction of biogeographic and evolutionary networks using reticulograms, Syst. Biol. 51(2), 199–216.

    Article  PubMed  Google Scholar 

  17. Makarenkov, V., Lapointe, F.J., 2004. A weighted least-squares approach for inferring phylogenies from incomplete distance matrices, Bioinformatics 20, 2113–2121.

    Article  CAS  PubMed  Google Scholar 

  18. Makarenkov, V., Leclerc, B., 1997. Tree metrics and their circular orders: Some uses for the reconstruction and fitting of phylogenetic trees, in B. Mirkin, F.R. McMorris, F. Roberts, and A. Rzhetsky, eds., Math-ematical Hierarchies and Biology, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical Society, Providence, RI, 183–208.

    Google Scholar 

  19. Makarenkov, V. 2001. T-Rex: Reconstructing and visualizing phylogenetic trees and reticulation networks, Bioinformatics 17, 664–668.

    Article  CAS  PubMed  Google Scholar 

  20. Makarenkov, V., Legendre, P. 2004, From a phylogenetic tree to a reticulated network, Journal of Computational Biology, 11(1), 195–212.

    Article  CAS  PubMed  Google Scholar 

  21. Mathur, R., Adlakha, N., 2011. A least squares method to determine reticulation in eight grass plastomes. 12(2), 230–242.

    Google Scholar 

  22. Normand, P. et al. 1992. Nucleotide sequence of nif D from Frankia alni strain ArI3: Phylogenetic inferences, Mol. Biol. Evol., 9, 495–506.

    CAS  PubMed  Google Scholar 

  23. Sprague, G.F. Jr 1991. Genetic exchange between kingdoms. Curr. Opin. Genet. Dev. 1, 530–33.

    Article  CAS  PubMed  Google Scholar 

  24. Stackebrandt, et al. 1988. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the purple bacteria and their relatives. Int. J. Syst. Bacteriol. 38, 321–325.

    Article  Google Scholar 

  25. Syvanen, M. 1994. Horizontal gene transfer: evidence and possible consequences. Annu. Rev. Genet. 28, 237–261.

    Article  CAS  PubMed  Google Scholar 

  26. Thompson, J.D., et al. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice, Nucleic Acids Research, 22(22), 4673–4680.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Young, J.P.W. 1992. Biological Nitrogen Fixation. Chapman and Hall, New York, 43–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuja Shanker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanker, A., Pardasani, K.R. Insilico model for prediction of lateral gene transfer in Rhodopseudomonas paulistris . Interdiscip Sci Comput Life Sci 6, 323–330 (2014). https://doi.org/10.1007/s12539-012-0071-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-012-0071-7

Key words

Navigation