Skip to main content

Advertisement

Log in

Chemometrics-based approach to modeling quantitative composition-activity relationships for Radix Tinosporae

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Quantitative composition-activity relationship (QCAR) study makes it possible to discover active components in traditional Chinese medicine (TCM) and to predict the integral bioactivity by its chemical composition. In the study, 28 samples of Radix Tinosporae were quantitatively analyzed by high performance liquid chromatography, and their analgesic activities were investigated via abdominal writhing tests on mice. Three genetic algorithms (GA) based approaches including partial least square regression, radial basis function neural network, and support vector regression (SVR) were established to construct QCAR models of R. Tinosporae. The result shows that GA-SVR has the best model performance in the bioactivity prediction of R. Tinosporae; seven major components thereof were discovered to have analgesic activities, and the analgesic activities of these components were partly confirmed by subsequent abdominal writhing test. The proposed approach allows discovering active components in TCM and predicting bioactivity by its chemical composition, and is expected to be utilized as a supplementary tool for the quality control and drug discovery of TCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng, Y.Y., Wang, Y., Wang, X.W. 2006. A causal relationship discovery-based approach to identifying active components of herbal medicine. Comput Biol Chem 30, 148–154.

    Article  CAS  PubMed  Google Scholar 

  2. Daren, Z. 2001. QSPR studies of PCBs by the combination of genetic algorithms and PLS analysis. Comput Chem 25, 197–204.

    Article  CAS  PubMed  Google Scholar 

  3. Faber, K., Kowalski, B.R. 1996. Comment on a recent sensitivity analysis of radial base function and multilayer feed-forward neural network models. Chemom Intell Lab Syst 34, 293–297.

    Article  CAS  Google Scholar 

  4. Fan, X.F., Cheng, Y.Y., Ye, Z.L., Lin, R.C., Qian, Z.Z. 2006. Multiple chromatographic fingerprinting and its application to the quality control of herbal medicines. Anal Chim Acta 555, 217–224.

    Article  CAS  Google Scholar 

  5. Harvey, A. 2000. Strategies for discovering drugs from previously unexplored natural products. Drug Discov Today 5, 294–300.

    Article  PubMed  Google Scholar 

  6. Harvey, A.L. 2008. Natural products in drug discovery. Drug Discov Today 13, 894–901.

    Article  CAS  PubMed  Google Scholar 

  7. Helland, I.S. 2001. Some theoretical aspects of partial least squares regression. Chemom Intell Lab Syst 58, 97–107.

    Article  CAS  Google Scholar 

  8. Kong, W.J., Zhao, Y.L., Shan, L.M., Xiao, X.H., Guo, W.Y. 2008. Investigation on the spectrum-effect relationships of EtOAc extract from RadixIsatidis based on HPLC fingerprints and microcalorimetry. J Chromatog B 871, 109–114.

    Article  CAS  Google Scholar 

  9. Kong, W.J., Zhao, Y.L., Xiao, X.H., Wang, J.B., Li, H.B., Li, Z.L., Jin, C., Liu, Y. 2009. Spectrum-effect relationships between ultra performance liquid chromatography fingerprints and anti-bacterial activities of Rhizoma coptidis. Anal Chim Acta 634, 279–285.

    Article  CAS  PubMed  Google Scholar 

  10. Leardi, R. 2001. Genetic algorithms in chemometrics and chemistry: A review. J Chemom 15, 559–569.

    Article  CAS  Google Scholar 

  11. Leardi, R. 2005. Application of genetic algorithms to feature selection under full validation conditions and to outlier detection. J Chemom 8, 65–79.

    Article  Google Scholar 

  12. Li, L., Jiang, W., Li, X., Moser, K.L., Guo, Z., Du, L., Wang, Q., Topol, E.J., Wang, Q., Rao, S. 2005. A robust hybrid between genetic algorithm and support vector machine for extracting an optimal feature gene subset. Genomics 85, 16–23.

    Article  CAS  PubMed  Google Scholar 

  13. Li, R.W., Leach, D.N., Myers, S.P., Leach, G.J., Lin, G.D., Brushett, D.J., Waterman, P.G. 2004. Antiinflammatory activity, cytotoxicity and active compounds of Tinospora smilacina Benth. Phytother Res 18, 78–83.

    Article  PubMed  Google Scholar 

  14. Li, R.W., Myers, S.P., Leach, D.N., Lin, G.D., Leach, G. 2003. A cross-cultural study: Anti-inflammatory activity of Australian and Chinese plants. J Ethnopharmacol 85, 25–32.

    Article  PubMed  Google Scholar 

  15. Liu, H.X., Zhang, R.S., Yao, X.J., Liu, M.C., Hu, Z.D., Fan, B.T. 2004. Prediction of the isoelectric point of an amino acid based on GA-PLS and SVMs. J Chem Inf Comput Sci 44, 161–167.

    CAS  PubMed  Google Scholar 

  16. Liu, X., Lu, W., Jin, S., Li, Y., Chen, N. 2006. Support vector regression applied to materials optimization of sialon ceramics. Chemom Intell Lab Syst 82, 8–14.

    Article  Google Scholar 

  17. Ma, S.C., Du, J., Bu, P.P., Deng X.L., Zhang, Y.W., Xu, H.X., Lee, S.H., Lee, S.F. 2002. Antiviral Chinese medicinal herbs against respiratory syncytial virus. J Ethnopharmacol 79, 205–211.

    Article  CAS  PubMed  Google Scholar 

  18. Normile, D. 2003. The new face of traditional Chinese medicine. Science 299, 188.

    Article  CAS  PubMed  Google Scholar 

  19. Rachel, W.G., David, L., Stephen, P.M., David, N.L. 2003. Anti-inflammatory activity of Chinese medicinal vine plants. J Ethnopharmacol 85, 61–67.

    Article  Google Scholar 

  20. Sardari, S., Shokrgozar, M.A., Ghavami, G. 2009. Cheminformatics based selection and cytotoxic effects of herbal extracts. Toxicology in Vitro 23, 1412–1421.

    Article  CAS  PubMed  Google Scholar 

  21. Shi, Q., Yan, S., Liang, M., Yang, Y., Wang, Y., Zhang, W. 2007. Simultaneous determination of eight components in Radix Tinosporae by high-performance liquid chromatography coupled with diode array detector and electrospray tandem mass spectrometry. J Pharm Biomed Anal 43, 994–999.

    Article  CAS  PubMed  Google Scholar 

  22. Sieg, S., Stutz, B., Schmidt, T., Hamprecht, T., Maier, W.F. 2006. QCAR-approach to materials modeling. J Mol Model 12, 611–619.

    Article  CAS  PubMed  Google Scholar 

  23. Souza, B.F., Carvalho, A.P. 2005. Gene selection based on multi-class support vector machines and genetic algorithms. Genet Mol Res 4, 599–607.

    PubMed  Google Scholar 

  24. Wang, X.W., Wang, Y., Cheng, Y.Y. 2005. Empirical study on modeling quantitative composition-activity relationships in Chinese herbal medicine. Conf Proc IEEE Eng Med Biol Soc Shanghai, China, 7722–7725.

  25. Wang, Y., Wang, X.W., Cheng, Y.Y. 2007. A computational approach to botanical drug design by modeling quantitative composition-activity relationship. Chem Biol Drug Des 68, 166–172.

    Google Scholar 

  26. Yu, K., Gong, Y., Lin, Z., Cheng, Y., 2007. Quantitative analysis and chromatographic fingerprinting for the quality evaluation of Scutellaria baicalensis Georgi using capillary electrophoresis. J Pharm Biomed Anal 43, 540–548.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, G.Z., Huang, D.S. 2004. Inter-residue spatial distance prediction by using integrating GA with RBFNN. Protein Pept Lett 11, 571–576.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, Y., Shi, Q., Shi, P., Zhang, W., Cheng, Y. 2006. Characterization of isoquinoline alkaloids, diterpenoids and steroids in the Chinese herb. Rapid Commun Mass Spectrom 20, 2328–2342.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, X.M., Huang, D.S., Cheung, Y.M. 2005. A novel hybrid GA/RBFNN technique for protein classification. Protein Pept Lett 12, 383–386.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Dong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, SK., Lin, ZY., Dai, WX. et al. Chemometrics-based approach to modeling quantitative composition-activity relationships for Radix Tinosporae . Interdiscip Sci Comput Life Sci 2, 221–227 (2010). https://doi.org/10.1007/s12539-010-0026-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-010-0026-9

Key words

Navigation