Skip to main content
Log in

Quality assessment and differentiation of Aucklandiae Radix and Vladimiriae Radix based on GC-MS fingerprint and chemometrics analysis: basis for clinical application

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Vladimiriae Radix, a geo-authentic medicinal herb found in Sichuan Province in China, is highly similar in chemical composition and pharmacological activity to Aucklandiae Radix. It is often used in local practice and as a substitute for Aucklandiae Radix in the treatment of gastrointestinal tract diseases. However, Vladimiriae Radix is preferred to Aucklandiae Radix in traditional Chinese medicine in Sichuan. In order to compare the difference in quality between the two species and differentiate them according to their chemical profiles, and further to explain the rationality of using Vladimiriae Radix as a substitute and explore the reason for the medication preference in Sichuan, similarity was evaluated using gas chromatography-mass spectrometry (GC-MS) fingerprinting and chemometric analysis. Volatile compounds were identified by comparing mass spectra with spectral data from the National Institute of Standards and Technology library 14.L (NIST 14.L) and the linear retention indices (RI) with those previously reported. The results showed that the similarity between the samples from Aucklandiae Radix (>96%) was greater than that of Vladimiriae Radix (>80%). In addition, 41 and 38 compounds were identified in 10 batches of Vladimiriae Radix and Aucklandiae Radix, respectively, and 21 compounds were common to both species, of which dehydrocostus lactone and aplotaxene were abundant in both. However, γ-patchoulene, longicyclene, β-gurjunene, humulene1,2-epoxide, and β-patchoulene were unique to Vladimiriae Radix, while 4-terpineol, α-ionone, trans-α-bergamotene, γ-selinene, and camphene were characteristic compounds of Aucklandiae Radix. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) suggested that the two species were well differentiated with regard to the level of essential oils. Orthogonal partial least squares discriminant analysis (OPLS-DA) further showed that compounds including costol, aplotaxene, caryophyllene, humulene, and β-eudesmol, together with the characteristic compounds of the two species, could be regarded as potential markers for differentiation, among which β-eudesmol, which is richer in Vladimiriae Radix, and β-patchoulene, which is unique to Vladimiriae Radix, have potential therapeutic effects on gastrointestinal diseases. The results obtained in this study distinguished Vladimiriae Radix and Aucklandiae Radix on a chemical level, and the similarity in chemical constituents may provide a basis for the rationality of Vladimiriae Radix as a substitute, while β-patchoulene and β-eudesmol existing in Vladimiriae Radix provide a theoretical basis for its preferential use in Sichuan. The analysis method established here has important implications for the quality control and differentiation of Vladimiriae Radix and Aucklandiae Radix, which can also serve as a reference for the identification of similar species.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Committee CP. Pharmacopoeia of the People’s Republic of China. Beijing: China Chemical Industry Press; 2015.

    Google Scholar 

  2. Wang ZY, Jia XB, Cen Y. Research progress on medicinal materials of Aucklandiae Radix. J Chin Med Mater. 2010;33(1):153–7. https://doi.org/10.13863/j.issn1001-4454.2010.01.050.

    Article  Google Scholar 

  3. Mao JX, Wang GW, Yi M, Huang YS, Chen M. Research progress on chemical constituents in Vladimiriae Radix and their pharmacological activities. Chin Tradit Herb Drugs. 2017;48(22):4797–803. https://doi.org/10.7501/j.issn.0253-2670.2017.22.032.

    Article  Google Scholar 

  4. Shum KC, Chen F, Li SL, Wang J, Wang J, But PPH, et al. Authentication of Radix Aucklandiae and its substitutes by GC-MS and hierarchical clustering analysis. J Sep Sci. 2007;30(18):3233–9. https://doi.org/10.1002/jssc.200700232.

    Article  CAS  PubMed  Google Scholar 

  5. Yang FL, Zhang YJ, Yu Y, Gao QN, Sun GX. Quality assessment of licorice extract powder through geometric linear quantified fingerprint method combined with multicomponent quantification and chemometric analysis. Microchem J. 2019;146:239–49. https://doi.org/10.1016/j.microc.2019.01.006.

    Article  CAS  Google Scholar 

  6. Kharbach M, Kamal R, Marmouzi I, Barra I, Cherrah Y, Alaoui K, et al. Fatty-acid profiling vs UV-visible fingerprints for geographical classification of Moroccan Argan oils. Food Control. 2019;95:95–105. https://doi.org/10.1016/j.foodcont.2018.07.046.

    Article  CAS  Google Scholar 

  7. Xie P, Chen SF, Liang YZ, Wang XH, Tian R, Upton R. Chromatographic fingerprint analysis--a rational approach for quality assessment of traditional Chinese herbal medicine. J Chromatogr A. 2006;1112(0021-9673 (Print)):171–80. https://doi.org/10.1016/j.chroma.2005.12.091.

    Article  CAS  PubMed  Google Scholar 

  8. Kong WJ, Zhao YF, Xiao XH, Jin CF, Li ZL. Quantitative and chemical fingerprint analysis for quality control of rhizoma Coptidischinensis based on UPLC-PAD combined with chemometrics methods. Phytomedicine. 2009;16(1618-095X (Electronic)):950–9. https://doi.org/10.1016/j.phymed.2009.03.016.

    Article  CAS  PubMed  Google Scholar 

  9. Cao XX, Sun LL, Li D, You GJ, Wang M, Ren XL. Quality evaluation of Phellodendri chinensis cortex by fingerprint-chemical pattern recognition. Molecules. 2018;23(9):E2307. https://doi.org/10.3390/molecules23092307.

    Article  CAS  PubMed  Google Scholar 

  10. Aliakbarzadeh G, Sereshti H, Parastar H. Pattern recognition analysis of chromatographic fingerprints of Crocus sativus L. secondary metabolites towards source identification and quality control. Anal Bioanal Chem. 2016;408(12):3295–307. https://doi.org/10.1007/s00216-016-9400-8.

    Article  CAS  PubMed  Google Scholar 

  11. Brereton RG. Pattern recognition in chemometrics. Chemometr Intell Lab. 2015;149:90–6. https://doi.org/10.1016/j.chemolab.2015.06.012.

    Article  CAS  Google Scholar 

  12. Acevska J, Stefkov G, Cvetkovikj I, Petkovska R, Kulevanova S, Cho J, et al. Fingerprinting of morphine using chromatographic purity profiling and multivariate data analysis. J Pharmaceut Biomed. 2015;109:18–27. https://doi.org/10.1016/j.jpba.2015.02.016.

    Article  CAS  Google Scholar 

  13. Tistaert C, Dejaegher B, Vander Heyden Y. Chromatographic separation techniques and data handling methods for herbal fingerprints: a review. Anal Chim Acta. 2011;690(2):148–61. https://doi.org/10.1016/j.aca.2011.02.023.

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Jiang K, Wang LJ, Han DQ, Yin G, Wang J, et al. Identification of Salvia species using high-performance liquid chromatography combined with chemical pattern recognition analysis. J Sep Sci. 2018;41(3):609–17. https://doi.org/10.1002/jssc.201701066.

    Article  CAS  PubMed  Google Scholar 

  15. Donno D, Boggia R, Zunin P, Cerutti AK, Guido M, Mellano MG, et al. Phytochemical fingerprint and chemometrics for natural food preparation pattern recognition: an innovative technique in food supplement quality control. J Food Sci Tech Mys. 2016;53(2):1071–83. https://doi.org/10.1007/s13197-015-2115-6.

    Article  CAS  Google Scholar 

  16. Lan CH, Huang YL, Ho SH, Peng CY. Volatile organic compound identification and characterization by PCA and mapping at a high-technology science park. Environ Pollut. 2014;193:156–64. https://doi.org/10.1016/j.envpol.2014.06.014.

    Article  CAS  PubMed  Google Scholar 

  17. Zhong JS, Wan JZ, Ding WJ, Wu XF, Xie ZY. Multi-responses extraction optimization combined with high-performance liquid chromatography-diode array detection-electrospray ionization-tandem mass spectrometry and chemometrics techniques for the fingerprint analysis of Aloe barbadensis Miller. J Pharm Biomed Anal. 2015;107:131–40. https://doi.org/10.1016/j.jpba.2014.12.032.

    Article  CAS  PubMed  Google Scholar 

  18. Tan HS, Hu DD, Song JZ, Xu Y, Cai SF, Chen QL, et al. Distinguishing Radix Angelica sinensis from different regions by HS-SFME/GC-MS. Food Chem. 2015;186:200–6. https://doi.org/10.1016/j.foodchem.2014.05.152.

    Article  CAS  PubMed  Google Scholar 

  19. Wang C, Zhang CX, Shao CF, Li CW, Liu SH, Peng XP, et al. Chemical fingerprint analysis for the quality evaluation of deepure instant Pu-erh tea by HPLC combined with chemometrics. Food Anal Methods. 2016;9(12):3298–309. https://doi.org/10.1007/s12161-016-0524-4.

    Article  Google Scholar 

  20. Guo H, Zhang Z, Yao Y, Liu JL, Chang RR, Liu Z, et al. A new strategy for statistical analysis-based fingerprint establishment: application to quality assessment of semen sojae praeparatum. Food Chem. 2018;258:189–98. https://doi.org/10.1016/j.foodchem.2018.03.067.

    Article  CAS  PubMed  Google Scholar 

  21. Khalil MNA, Fekry MI, Farag MA. Metabolome based volatiles profiling in 13 date palm fruit varieties from Egypt via SPME GC-MS and chemometrics. Food Chem. 2017;217:171–81. https://doi.org/10.1016/j.foodchem.2016.08.089.

    Article  CAS  PubMed  Google Scholar 

  22. Lu LY, Zhang JZ, Zhang ZF, Liu Y, Zeng R, Lu JM, et al. UPLC fingerprint spectra for discrimination of Aucklandiae Radix and Vladimiriae Radix. Chin J Chin Mater Med. 2014;39(14):2699–703. https://doi.org/10.4268/cjcmm20141421.

    Article  CAS  Google Scholar 

  23. Parki A, Chaubey P, Prakash O, Kumar R, Pant AK. Seasonal variation in essential oil compositions and antioxidant properties of Acorus calamus L. accessions. Medicines (Basel). 2017;4(4):E81. https://doi.org/10.3390/medicines4040081.

    Article  CAS  Google Scholar 

  24. Chaib F, Allali H, Bennaceur M, Flamini G. Chemical composition and antimicrobial activity of essential oils from the aerial parts of Asteriscus graveolens (Forssk.) Less. and Pulicaria incisa (Lam.) DC.: two Asteraceae herbs growing wild in the Hoggar. Chem Biodivers. 2017;14(8):e1700092. https://doi.org/10.1002/cbdv.201700092.

    Article  CAS  Google Scholar 

  25. Skala E, Id O, Rijo P, Garcia C, Sitarek P, Id O, et al. The essential oils of Rhaponticum carthamoides hairy roots and roots of soil-grown plants: chemical composition and antimicrobial, anti-inflammatory, and antioxidant activities. Oxidative Med Cell Longev. 2016;2016:8505384. https://doi.org/10.1155/2016/8505384.

    Article  CAS  Google Scholar 

  26. Nazaruk J, Karna E, Kalemba D. The chemical composition of the essential oils of Cirsium palustre and C. rivulare and their antiproliferative effect. Nat Prod Commun. 2012;7(2):269–72.

    CAS  PubMed  Google Scholar 

  27. Wei H, Peng Y, Ma GX, Xu LJ, Xiao PG. Advances in studies on active components of Saussurea lappa and their pharmacological actions. Chin Tradit Herb Drugs. 2012;43(3):613–20.

    CAS  Google Scholar 

  28. Choudhary S, Marjianovic DS, Wong CR, Zhang XY, Abongwa M, Coats JR, et al. Menthol acts as a positive allosteric modulator on nematode levamisole sensitive nicotinic acetylcholine receptors. Int J Parasitol-Drug. 2019;9:44–53. https://doi.org/10.1016/j.ijpddr.2018.12.005.

    Article  Google Scholar 

  29. de Oliveira MG, Nascimento DM, Alexandre EC, Bonilla-Becerra SM, Zapparoli A, Monica FZ, et al. Menthol ameliorates voiding dysfunction in types I and II diabetic mouse model. Neurourol Urodyn. 2018;37(8):2510–8. https://doi.org/10.1002/nau.23785.

    Article  CAS  PubMed  Google Scholar 

  30. Liang S, Liang YZ, Li YW, Zhao CX. Analysis of volatile components in Aucklandia Lappa Decne. by gas chromatography-mass spectrometry. Guangzhou Chem. 2007; (04):12–17+24. https://doi.org/10.16560/j.cnki.gzhx.2007.04.013.

  31. Zhang LS, Yang ZY, Dong GP, Liu GM. Study on chemical constituents of essential oil in Saussurea Lappa C.B Clarke. J Dali Univ. 2007;12:9–12.

    Google Scholar 

  32. Bao YM, Zhang L, Ma YY, Li YJ, Wan L. Analysis of the chemical constituents of the essential oil of Aucklandia lappa Decne. Chin J Spectrosc Lab. 2011;28(01):121–3.

    CAS  Google Scholar 

  33. Huang HW, Shi WK, Liang S. Analysis of volatile components in Rdix Vladimiria Souliei (Franch.) Ling by gas chromatography-mass spectrometry (GC-MS). Evaluation and analysis of drug-use in hospitals of China. 2008;09:675–76. https://doi.org/10.14009/j.issn.1672-2124.2008.09.002.

  34. Yang WH, Liu YH, Liang JL, Lin ZX, Kong QL, Xian YF, et al. beta-Patchoulene, isolated from patchouli oil, suppresses inflammatory mediators in LPS-stimulated RAW264.7 macrophages. Eur J Inflamm. 2017;15(2):136–41. https://doi.org/10.1177/1721727x17714694.

    Article  CAS  Google Scholar 

  35. Zhang ZB, Chen XY, Chen HB, Wang L, Liang JL, Luo DD, et al. Anti-inflammatory activity of beta-patchoulene isolated from patchouli oil in mice. Eur J Pharmacol. 2016;781:229–38. https://doi.org/10.1016/j.ejphar.2016.04.028.

    Article  CAS  PubMed  Google Scholar 

  36. Liu YH, Liang JL, Wu JZ, Chen HB, Zhang ZB, Yang HM, et al. Transformation of patchouli alcohol to β-patchoulene by gastric juice: β-patchoulene is more effective in preventing ethanol-induced gastric injury. Sci Rep-UK. 2017;7:5591. https://doi.org/10.1038/s41598-017-05996-5.

    Article  CAS  Google Scholar 

  37. Wu JZ, Liu YH, Liang JL, Huang QH, Dou YX, Nie J, et al. Protective role of beta-patchoulene from Pogostemon cablin against indomethacin-induced gastric ulcer in rats: involvement of anti-inflammation and angiogenesis. Phytomedicine. 2018;39:111–8. https://doi.org/10.1016/j.phymed.2017.12.024.

    Article  CAS  PubMed  Google Scholar 

  38. Fontes JED, Ferraz RPC, Britto ACS, Carvalho AA, Moraes MO, Pessoa C, et al. Antitumor effect of the essential oil from leaves of Guatteria pogonopus (Annonaceae). Chem Biodivers. 2013;10(4):722–9. https://doi.org/10.1002/cbdv.201200304.

    Article  CAS  Google Scholar 

  39. Wang Z, Zhao X, Gong XG. Costunolide induces lung adenocarcinoma cell line A549 cells apoptosis through ROS (reactive oxygen species)-mediated endoplasmic reticulum stress. Cell Biol Int. 2016;40(3):289–97. https://doi.org/10.1002/cbin.10564.

    Article  CAS  PubMed  Google Scholar 

  40. Chen JS, Chen BS, Zou ZH, Li W, Zhang YM, Xie JL, et al. Costunolide enhances doxorubicin-induced apoptosis in prostate cancer cells via activated mitogen-activated protein kinases and generation of reactive oxygen species. Oncotarget. 2017;8(64):107701–15. https://doi.org/10.18632/oncotarget.22592.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Peng ZX, Wang Y, Fan JH, Lin XJ, Liu CY, Xu Y, et al. Costunolide and dehydrocostuslactone combination treatment inhibit breast cancer by inducing cell cycle arrest and apoptosis through c-Myc/p53 and AKT/14-3-3 pathway. Sci Rep. 2017;7:41254. https://doi.org/10.1038/srep41254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu WS, Chen RJ, Vladimir K, Dong XD, Zia K, Sun XW, et al. Costunolide specifically binds and inhibits thioredoxin reductase 1 to induce apoptosis in colon cancer. Cancer Lett. 2018;412:46–58. https://doi.org/10.1016/j.canlet.2017.10.006.

    Article  CAS  Google Scholar 

  43. Liu S, Zhao Y, Cui HF, Cao CY, Zhang YB. 4-Terpineol exhibits potent in vitro and in vivo anticancer effects in Hep-G2 hepatocellular carcinoma cells by suppressing cell migration and inducing apoptosis and sub-G1 cell cycle arrest. J Buon. 2016;21(5):1195–202.

    PubMed  Google Scholar 

  44. Tong T, Id O, Park J, Id O, Moon Y, Kang W, et al. Alpha-ionone protects against UVB-induced photoaging in human dermal fibroblasts. Molecules. 2019;24(9):E1804. https://doi.org/10.3390/molecules24091804.

    Article  CAS  PubMed  Google Scholar 

  45. Tong T, Kim M, Park T. alpha-Ionone attenuates high-fat diet-induced skeletal muscle wasting in mice via activation of cAMP signaling. Food Funct. 2019;10(2):1167–78. https://doi.org/10.1039/c8fo01992d.

    Article  CAS  PubMed  Google Scholar 

  46. Benelli G, Govindarajan M, Rajeswary M, Vaseeharan B, Alyahya SA, Alharbi NS, et al. Insecticidal activity of camphene, zerumbone and alpha-humulene from Cheilocostus speciosus rhizome essential oil against the Old-World bollworm, Helicoverpa armigera. Ecotox Environ Safe. 2018;148:781–6. https://doi.org/10.1016/j.ecoenv.2017.11.044.

    Article  CAS  Google Scholar 

  47. Benelli G, Govindarajan M, AlSalhi MS, Devanesan S, Maggi F. High toxicity of camphene and gamma-elemene from Wedelia prostrata essential oil against larvae of Spodoptera litura (Lepidoptera: Noctuidae). Environ Sci Pollut Res. 2018;25(11):10383–91. https://doi.org/10.1007/s11356-017-9490-7.

    Article  CAS  Google Scholar 

  48. Girola N, Figueiredo CR, Farias CF, Azevedo RA, Ferreira AK, Teixeira SF, et al. Camphene isolated from essential oil of Piper cernuum (Piperaceae) induces intrinsic apoptosis in melanoma cells and displays antitumor activity in vivo. Biochem Biophys Res Commun. 2015;467(4):928–34. https://doi.org/10.1016/j.bbrc.2015.10.041.

    Article  CAS  PubMed  Google Scholar 

  49. Tikam CJ, Calvin MB, John EM. Dehydrosaussurea lactone from costunolide and reversibility in the germacranolide-cope reaction. Tetrahedron Lett. 1970;11:841–4.

    Article  Google Scholar 

  50. Kotawong K, Chaijaroenkul W, Muhamad P, Na-Bangchang K. Cytotoxic activities and effects of atractylodin and beta-eudesmol on the cell cycle arrest and apoptosis on cholangiocarcinoma cell line. J Pharmacol Sci. 2018;136(2):51–6. https://doi.org/10.1016/j.jphs.2017.09.033.

    Article  CAS  PubMed  Google Scholar 

  51. Srijiwangsa P, Ponnikorn S, Na-Bangchang K. Effect of beta-Eudesmol on NQO1 suppression-enhanced sensitivity of cholangiocarcinoma cells to chemotherapeutic agents. BMC Pharmacol Toxicol. 2018;19. https://doi.org/10.1186/00360-018-0223-4.

  52. Kimura Y, Sumiyoshi M. Effects of an Atractylodes lancea rhizome extract and a volatile component beta-eudesmol on gastrointestinal motility in mice. J Ethnopharmacol. 2012;141(1):530–6. https://doi.org/10.1016/j.jep.2012.02.031.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Xiaomin Yan would like to express her gratitude to the College of Innovation, Chengdu University of Traditional Chinese Medicine for providing the GC-MS technical support.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81473354) and Double-First Class Foundation of Chengdu University of TCM (Grant No. 030041081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiling Hu or Zhanguo Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 210 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Wang, W., Chen, Z. et al. Quality assessment and differentiation of Aucklandiae Radix and Vladimiriae Radix based on GC-MS fingerprint and chemometrics analysis: basis for clinical application. Anal Bioanal Chem 412, 1535–1549 (2020). https://doi.org/10.1007/s00216-019-02380-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02380-2

Keywords

Navigation