Skip to main content
Log in

Geweld door alcohol en drugs (I)

De neurobiologie van agressie

  • Middelen
  • Published:
Verslaving

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figuur 1

Notes

  1. Vanuit een bepaald hersengebied – het ventraal tegmentaal gebied – lopen dopaminerge zenuwuitlopers naar de frontale cortex en delen van het limbisch systeem. Deze projectieroute, het mesocorticolimbisch dopaminesysteem, wordt ook wel het dopaminerge beloningssysteem genoemd, omdat het nauw betrokken is bij beloning en verslaving.

  2. Het transporteiwit van een neurotransmitter is het eiwit (de receptor) dat ervoor zorgt dat een bepaalde neurotransmitter weer wordt opgenomen in de zenuwcel.

Literatuur

  • Aiyer, S. M., Heinze, J. E., Miller, A. L., Stoddard, S. A., & Zimmerman, M. A. (2014). Exposure to violence predicting cortisol response during adolescence and early adulthood: understanding moderating factors. Journal of Youth and Adolescence, 43, 1066–1079.

    Article  PubMed  PubMed Central  Google Scholar 

  • Almeida, R. M. de, Ferrari, P. F., Parmigiani, S., & Miczek, K. A. (2005). Escalated aggressive behavior: dopamine, serotonin and GABA. European Journal of Pharmacology, 526, 51–64.

    Article  PubMed  Google Scholar 

  • Almeida, R. M. de, Cabral, J. C., & Narvaes, R. (2015). Behavioural, hormonal and neurobiological mechanisms of aggressive behaviour in human and nonhuman primates. Physiology and Behavior, 143, 121–135.

    Article  PubMed  Google Scholar 

  • Carré, J. M., Putnam, S. K., & McCormick, C. M. (2009). Testosterone responses to competition predict future aggressive behaviour at a cost to reward in men. Psychoneuroendocrinology, 34, 561–570.

    Article  PubMed  Google Scholar 

  • Coccaro, E. F., Beresford, B., Minar, P., Kaskow, J., & Geracioti, T. (2007). CSF testosterone: relationship to aggression, impulsivity, and venturesomeness in adult males with personality disorder. Journal of Psychiatric Research, 41, 488–492.

    Article  PubMed  Google Scholar 

  • Erp, A. M. van, & Miczek, K. A. (2007). Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. Journal of Neuroscience, 20, 9320–9325.

    Google Scholar 

  • Hermans, E. J., Ramsey, N. F., & Honk, H. J. van (2008). Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans. Biological Psychiatry, 63, 263–270.

    Article  CAS  PubMed  Google Scholar 

  • Marino, M. D., Bourdelat-Parks, B. N., Cameron, L. L., & Weinshenker, D. (2005). Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice. Behavioural Brain Research, 161, 197–203.

    Article  CAS  PubMed  Google Scholar 

  • Mazur, A., & Booth, A. (1998). Testosterone and dominance in men. Behavioral and Brain Sciences, 21, 353–363.

    Article  CAS  PubMed  Google Scholar 

  • Miczek, K. A., De Almeida, R. M., Kravitz, E. A., Rissman, E. F., Boer, S. F. de, et al. (2007). Neurobiology of escalated aggression and violence. Journal of Neuroscience, 27, 11803–11806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson, R. J., & Trainor, B. C. (2007). Neural mechanisms of aggression. Nature Reviews Neuroscience, 8, 536.

    Article  CAS  PubMed  Google Scholar 

  • Olivier, B., Oorschot, R. van, & Oosting, R. (2000). Agressie, serotonine en genen. Neuropraxis, 4, 1–6.

    Article  Google Scholar 

  • Pardini, M., Krueger, F., Hodgkinson, C., Raymont, V., Ferrier, C., et al. (2011). Prefrontal cortex lesions and MAO-A modulate aggression in penetrating traumatic brain injury. Neurology, 76, 1038–1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popma, A., Doreleijers, T. A., Jansen, L. M., Van Goozen, S. H., Engeland, E. H. van, & Vermeiren, R. (2007). The diurnal cortisol cycle in delinquent male adolescents and normal controls. Neuropsychopharmacology, 32, 1622–1628.

    Article  CAS  PubMed  Google Scholar 

  • Rosell, D. R., & Siever, L. J. (2015). The neurobiology of aggression and violence. CNS Spectrums, 20, 254–279.

    Article  PubMed  Google Scholar 

  • Tost, H., & Meyer-Lindenberg, A. (2010). I fear for you: a role for serotonin in moral behavior. Proceedings of the National Academy of Sciences of the United States of America, 107, 17071–17072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vassos, E., Collier, D. A., & Fazel, S. (2014). Systematic meta-analyses and field synopsis of genetic association studies of violence and aggression. Molecular Psychiatry, 19, 471–477.

    Article  CAS  PubMed  Google Scholar 

  • Wells, S., Mihic, L., Tremblay, P. F., Graham, K., & Demers, A. (2008). Where, with whom, and how much alcohol is consumed on drinking events involving aggression? Event-level associations in a Canadian national survey of university students. Alcoholism: Clinical and Experimental Research, 32, 522–533.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Niesink.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niesink, R., van Amsterdam, J. Geweld door alcohol en drugs (I). Verslaving 13, 178–188 (2017). https://doi.org/10.1007/s12501-017-0131-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12501-017-0131-0

Navigation