Skip to main content
Log in

Evaluation of Seasonal Variability of Toxic and Essential Elements in Urine Analyzed by Inductively Coupled Plasma Mass Spectrometry

  • Original Paper
  • Published:
Exposure and Health Aims and scope Submit manuscript

Abstract

Human exposure to elements is a process difficult to control and monitor. Studies on this topic usually rely on single spot urine sample to assess exposure, with the risk of ignoring variability over a longer period. In this work, we measured the urinary excretion of toxic and essential elements during 1 year with the overall goal of exploring the variability caused by seasonality on their concentration. Seven participants were recruited, and first morning urines were collected three times for each season, during November, January, April and July. Participants followed the same balanced diet during the week of collection. We then monitored nineteen essential and toxic elements in urines by inductively coupled plasma mass spectrometry. Unsupervised multivariate statistical analysis separated samples collected during summer from the ones collected during other seasons. Twelve elements had a significant seasonal variation (ANOVA test, p < 0.05) and their levels resulted increased during summer. These elements were both contaminants, such as Ni, Hg, Cd and Tl, and essential elements such as Se and Cu. However, none of these elements was detected at toxic concentration. In this study, we point out for the first time the variability of urine element concentration due to seasonality and we propose that the season of collection should be considered when providing urinary reference values of elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alessio L (1993) Reference values for the study of low doses of metals. Int Arch Occup Environ Health 65:S23–S27

    Article  CAS  Google Scholar 

  • Birgisdottir BE et al (2013) Essential and toxic element concentrations in blood and urine and their associations with diet: results from a Norwegian population study including high-consumers of seafood and game. Sci Total Environ 463–464:836–844. doi:10.1016/j.scitotenv.2013.06.078

    Article  Google Scholar 

  • Daher N, Hasheminassaba S, Shafer MM, Schauer JJ, Sioutas C (2013) Seasonal and spatial variability in chemical composition and mass closure of ambient ultrafine particles in the megacity of Los Angeles. Environ Sci Process Impacts 15:283–295

    Article  CAS  Google Scholar 

  • Fréry N, Saoudi A, Garnier R, Zeghnoun A, Falq G (2011) Exposition de la population française aux substances chimiques de l’environnement. Institut de veille sanitaire, Saint-Maurice, p 151

    Google Scholar 

  • Friberg L, Nordberg GF, Vouk VS (1986) Handbook on the toxicology of metals. Elsevier, New York

    Google Scholar 

  • Gunier RB et al (2013) Determinants and within-person variability of urinary cadmium concentrations among women in northern California. Environ Health Perspect 121:643–649. doi:10.1289/ehp.1205524

    Article  Google Scholar 

  • Hao Z, Li Y, Li H, Wei B, Liao X, Liang T, Yu J (2015) Levels of rare earth elements, heavy metals and uranium in a population living in Baiyun Obo, Inner Mongolia, China: a pilot study. Chemosphere 128:161–170. doi:10.1016/j.chemosphere.2015.01.057

    Article  CAS  Google Scholar 

  • Heitland P, Koster HD (2004) Fast, simple and reliable routine determination of 23 elements in urine by ICP-MS. J Anal At Spectrom 19:1552–1558

    Article  CAS  Google Scholar 

  • Heitland P, Koster HD (2006) Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS. Clin Chim Acta 365:310–318. doi:10.1016/j.cca.2005.09.013

    Article  CAS  Google Scholar 

  • Hoet P, Jacquerye C, Deumer G, Lison D, Haufroid V (2013) Reference values and upper reference limits for 26 trace elements in the urine of adults living in Belgium. Clin Chem Lab Med 51:839–849. doi:10.1515/cclm-2012-0688

    Article  CAS  Google Scholar 

  • Kumagai Y, Arimoto T, Shinyashiki M, Shimojo N, Nakai Y, Yoshikawa T, Sagai M (1997) Generation of reactive oxygen species during interaction of diesel exhaust particle components with NADPH-cytochrome P450 reductase and involvement of the bioactivation in the DNA damage. Free Radic Biol Med 22:479–487

    Article  CAS  Google Scholar 

  • Malea P, Chatziapostolou A, Kevrekidis T (2015) Trace element seasonality in marine macroalgae of different functional-form groups. Mar Environ Res 103:18–26. doi:10.1016/j.marenvres.2014.11.004

    Article  CAS  Google Scholar 

  • Morton J, Tan E, Leese E, Cocker J (2014) Determination of 61 elements in urine samples collected from a non-occupationally exposed UK adult population. Toxicol Lett 231:179–193. doi:10.1016/j.toxlet.2014.08.019

    Article  CAS  Google Scholar 

  • NHANES CfDCaP (2013) National Health and Nutrition Examination Survey (NHANES) Fourth National Exposure Report, Updated Tables

  • Nixon DE, Moyer TP (1996) Routine clinical determination of lead, arsenic cadmium and thallium in urine and whole blood by inductively coupled plasma-mass spectrometry. Spectrochim Acta Part B Atomic Spectrosc 51:13–25. doi:10.1016/0584-8547(95)01372-5

    Article  Google Scholar 

  • Nordberg G, Brune D, Gerhardsson L, Grandjean P, Vesterberg O, Wester PO (1992) The ICOH and IUPAC international programme for establishing reference values of metals. Sci Total Environ 120:17–21

    Article  CAS  Google Scholar 

  • Paglia G, Sigurjonsson OE, Rolfsson O, Hansen MB, Brynjolfsson S, Gudmundsson S, Palsson BO (2014) Metabolomic analysis of platelets during storage: a comparison between apheresis- and buffy coat-derived platelet concentrates. Transfusion. doi:10.1111/trf.12834

    Google Scholar 

  • Paglia G, Miedico O, Cristofano A et al (2016) Distinctive pattern of serum elements during the progression of Alzheimer’s disease. Sci Rep 6:22769. doi:10.1038/srep22769

    Article  CAS  Google Scholar 

  • Rosner B (2000) Fundamentals of Biostatistic, 5th edn. Duxbury Press, Pacific Grove, CA

    Google Scholar 

  • Rusyniak DE, Arroyo A, Acciani J, Froberg B, Kao L, Furbee B (2010) Heavy metal poisoning: management of intoxication and antidotes. EXS 100:365–396

    CAS  Google Scholar 

  • Saldiva PH et al (2002) Lung inflammation induced by concentrated ambient air particles is related to particle composition. Am J Respir Crit Care Med 165:1610–1617. doi:10.1164/rccm.2106102

    Article  Google Scholar 

  • Trichopoulou A, Costacou T, Bamia C, Trichopoulos D (2003) Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med 348:2599–2608. doi:10.1056/NEJMoa025039

    Article  Google Scholar 

  • Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6:469–479. doi:10.1021/pr060594q

    Article  CAS  Google Scholar 

  • Vesterberg O, Alessio L, Brune D et al (1993) International project for producing reference values for concentrations of trace elements in human blood and urine–TRACY. Scand J Work Environ Health 19(Suppl 1):19–26

    CAS  Google Scholar 

  • Wang YX, Feng W, Zeng Q et al (2015) Variability of metal levels in spot, first morning, and 24-hour urine samples over a 3-month period in healthy adult chinese men. Environ Health Perspect. doi:10.1289/ehp.1409551

    Google Scholar 

  • White MA, Sabbioni E (1998) Trace element reference values in tissues from inhabitants of the European Union. X. A study of 13 elements in blood and urine of a United Kingdom population. Sci Total Environ 216:253–270

    Article  CAS  Google Scholar 

  • Wild CP (2005) Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev 14:1847–1850. doi:10.1158/1055-9965.EPI-05-0456

    Article  CAS  Google Scholar 

  • Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0 a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40:W127–W133. doi:10.1093/nar/gks374

    Article  CAS  Google Scholar 

  • Zeng Q, Feng W, Zhou B et al (2015) Urinary metal concentrations in relation to semen quality: a cross-sectional study in China. Environ Sci Technol 49:5052–5059. doi:10.1021/es5053478

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to give our sincere thanks to the participants of this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giuseppe Paglia or Gaetano Corso.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paglia, G., Miedico, O., Tarallo, M. et al. Evaluation of Seasonal Variability of Toxic and Essential Elements in Urine Analyzed by Inductively Coupled Plasma Mass Spectrometry. Expo Health 9, 79–88 (2017). https://doi.org/10.1007/s12403-016-0222-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12403-016-0222-x

Keywords

Navigation