Skip to main content
Log in

New Spain: France Transmission Line: A Cost-Benefit Analysis

Neue HGÜ-Leitung zwischen Spanien-Frankreich: eine Kosten-Nutzen Analyse

  • Published:
Zeitschrift für Energiewirtschaft Aims and scope Submit manuscript

An Erratum to this article was published on 07 May 2015

Abstract

As the costs for the new planned underground high-voltage direct current (HVDC) line between Spain and France exceed the ones of alternating current (AC) overhead line alternatives it raises the question if the high costs can be justified by adequate benefits for society like increased security of supply. For this reason, the economic effects of the planned HVDC underground transmission line are evaluated through a cost-benefit analysis and the results are compared to an alternative new AC overhead line along the same route as well as an upgrade of a nearby AC overhead line. For an evaluation of the economic welfare effects, investment and operating costs as well as benefits from increased security of supply are quantified using the electricity network model ELMOD. All considered line options result in overall positive discounted net welfare gains for society with the new AC line option showing the highest ones. However, it is stressed that the HVDC solution holds certain advantages over the AC technology that cannot be explicitly quantified in a line assessment.

Zusammenfassung

Die Kosten der geplanten unterirdisch verlegten Hochspannungs-Gleichstrom-Übertragungsleitung (HGÜ) zwischen Spanien und Frankreich übersteigen die Investitionskosten einer vergleichbaren Wechselstrom-Freileitung. Die Frage stellt sich, ob die Mehrkosten mit ausreichendem Zusatznutzen für die Gesellschaft, wie zum Beispiel erhöhter Versorgungssicherheit, zu rechtfertigen sind. Aus diesem Grund wurden die ökonomischen Effekte der geplanten unterirdischen HGÜ-Leitung durch eine Kosten-Nutzen-Analyse untersucht und die Ergebnisse sowohl mit einer alternativen neuen Wechselstrom-Freileitung entlang derselben Route als auch mit einer Erweiterung einer bestehenden Wechselstrom-Freileitung in der Nähe verglichen. Um die ökonomischen Wohlfahrtseffekte zu berechnen, wurden die Investitions- und Betriebskosten sowie die Vorteile einer erhöhten Versorgungssicherheit mit Hilfe des Netzmodels ELMOD quantifiziert. Alle untersuchten Leitungsalternativen ergaben einen positiven abgezinsten Nettowohlfahrtsgewinn für die Gesellschaft unter Berücksichtigung einer gesteigerten Versorgungssicherheit, wobei der Neubau einer alternativen Wechselstrom-Freileitung den höchsten Wert erzielte. Es muss jedoch hervorgehoben werden, dass eine Gleichstromleitung bestimmte Vorteile gegenüber der Wechselstrom-Technologie besitzt, die jedoch nicht explizit in der Analyse quantifiziert werden konnten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Reactive power is increasing with line distance. In other words, if transport distance is longer than approx. 40 km, a transport of active power is very limited (due to reactive power work load) and compensation units are necessary. This is why HVDC lines are often the preferred option.

  2. “A detailed description of the economic assessment methodology can be found in CAISO (2004).”

  3. ELMOD is theoretically capable of calculating a timeframe of 24 hours, although this gets computational challenging for a scope of more than one country included with its detailed grid.

  4. For details how to technically derive the demand function see Leuthold et al. (2010)

  5. This is referred to as ‘adjusted’ demand in Table 8 in Appendix B. We are aware that a subtraction might have a theoretical impact on nodal prices. But as the subtracted capacity is comparably low, the effect can be neglected here.

  6. The “Nomenclature of Statistical Territorial Units” (NUTS) is a hierarchical system for dividing up the economic territory of the EU.

  7. We are aware that through this we might ignore some congestion rents on the Morocco-Spain interconnection, but this approach has been chosen as it is a quite simple way (and the only possibility) to model the ensured export in an AC grid.

  8. In reality, regional differences might exist due to transportation costs for fuels, different regional potentials (e.g. biomass availability), etc.

  9. For details see Table 8 in Appendix B.

  10. Dynamic effects can be expected due to reactions of market players to welfare changes. For instance producers might react to their lower producer surplus over time by changing their investment plans (de Nooij 2011, p. 3103). These effects are difficult to consider in a model and therefore neglected here.

  11. 100 % would be too high as the interconnector is most probably utilized to a certain extent all the time. Golder Associates and ECOFYS (2008) propose an average line utilization of 60 % leaving 40 % for backup. We use 30 % as a more conservative approach.

  12. Several TSOs are exposed to public resistance in grid extension projects, so that there is a research need how to overcome public resistance. The dissertation under preparation of Perras addresses this important problem and the interested reader is referred to Perras (2014).

References

  • BiomassEnergie (2011) Entwicklung der Biomasse in der Schweiz. http://www.biomasseenergie.ch/Markt/Entwicklung/tabid/164/language/de-CH/Default.aspx. Accessed 8 March 2011

  • California ISO (CAISO) (2004) Transmission Economic Assessment Methodology (TEAM). Folsom, CA

    Google Scholar 

  • Cole S, van Hertem D, Pardon I, Belmans R, (2006) Randstad HVDC

  • Commission for Energy Regulation (2011) Fixed cost of a best new entrant peaking plant capacity requirement for the calendar year 2012: Consultation Paper. SEM-11-025

  • Decision No 1229/2003/EC of the European Parliament and of the Council of 26 June 2003 laying down a series of guidelines for trans-European energy networks and repealing Decision No 1254/96/EC. Official Journal of the European Union. European Commission 15.07.2003

  • de Nooij M (2011) Social cost-benefit analysis of electricity interconnector investment: a critical appraisal. Energ Policy 39(6):3096–3105. doi:10.1016/j.enpol.2011.02.049

    Article  Google Scholar 

  • Deutsche Bank (2010) Carbon emissions—a reminder of the EU-ETS rules on banking for EUAs

  • Deutsche Energie Agentur (DENA) (2010) DENA-Netzstudie II. Integration erneuerbarer Energien in die deutsche Stromversorgung im Zeitraum 2015–2020 mit Ausblick 2025. Berlin

  • EEX (2010) Actual solar power generation. http://www.transparency.eex.com/en/Statutory%20Publication%20Requirements%20of%20the%20Transmission%20System%20Operators/Power%20generation/Actual%20solar%20power%20generation. Accessed 11 July 2011

  • EEX (2011a) Sport market hourly auction—hourly contracts for power. http://www.eex.com/en/Market%20Data/Trading%20Data/Power/Hour%20Contracts%20|%20Spot%20Hourly%20Auction. Accessed 10 July 2011

  • EEX (2011b) Actual wind power generation. http://www.transparency.eex.com/en/Statutory%20Publication%20Requirements%20of%20the%20Transmission%20System%20Operators/Power%20generation/Actual%20wind%20power%20generation. Accessed 14 July 2011

  • Eijgenraam C, Koopmans C, Tang P, Verster ACP (2000) Evaluation of infrastructural projects. Guide for cost-benefit analysis—Section I. CPB Netherlands Bureau for Economic Policy Analysis; Netherlands Economic Institute, Rotterdam

  • Emerging Energy Research (2009) Southern Europe Solar PV markets and strategies. 2009–2020. Cambridge

  • Energy Research Center of the Netherlands (ECN), European Environment Agency (EEA) (2011) Renewable Energy Projections as published in the National Renewable Energy Action Plans of the European member states

  • ENTSO-E (2010a) Ten-Year network development plan 2010–2020. Brussels

  • ENTSO-E (2010b) ENTSO-E grid map. https://www.entsoe.eu/resources/grid-map/. Accessed 4 March 2011

  • ENTSO-E (2011a) Indicative values for net transfer capacities (NTC) in continental Europe: Summer 2010. https://www.entsoe.eu/fileadmin/user_upload/_library/ntc/archive/NTC_Values_-_Summer-2010.pdf. Accessed 1 March 2011

  • ENTSO-E (2011b) Hourly consumption data of all countries. https://www.entsoe.eu/resources/data-portal/consumption/. Accessed 10 July 2011

  • Emerging Energy Research (2010) Global wind turbine markets and strategies. 2010–2025. Cambridge

  • ESMAP (2011) Power sector financial vulnerability assessment: Impact of the credit crisis on investments in the power sector. The case of Morocco

  • European Commission (EC) Directorate-General (DG) for Energy (2010) EU energy trends to 2030. Update 2009, Brussels

  • European Commission (EC) Directorate-General (DG) Joint Research Center (JRC) (2011) PVGIS download. http://re.jrc.ec.europa.eu/pvgis/download/download.htm. Accessed 2 March 2011

  • European Council (2002) Presidency conclusions—Barcelona European Council 15 and 16 March 2002, Brussels

  • Eurostat (2011) Gross value added at basic prices at NUTS level 3. http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama_r_e3vabp95lang=En-US. Accessed 10 July 2011

  • EWI, Prognos (2005) Die Entwicklung der Energiemärkte bis zum Jahr 2030: Energiewirtschaftliche Referenzprognose. Energiereport IV - Kurzfassung. Berlin

  • Golder Associates ECOFYS (2008) Study on the comparative merits of overhead electricity transmission lines versus underground cables. Naas, Cologne

    Google Scholar 

  • ICF Consulting (2003) The Economic Cost of the Blackout—An issue paper on the Northeastern Blackout, August 14, 2003, London

  • International Energy Agency (IEA), Nuclear Energy Agency (NEA) (2010) Projected costs of generating electricity. OECD Publishing and Nuclear Energy Agency, Paris

    Google Scholar 

  • Joskow PL (2005) Transmission policy in the United States. Utilities Policy 13(2):95–115. doi:10.1016/j.jup.2004.12.005

    Article  Google Scholar 

  • Kapff L, Pelkmans J (2010) Interconnector investment for a well-functioning internal market. What EU regime of regulatory incentives? Bruges European Economic Research Papers No. BEER 18

  • Leuthold FU, Rumiantseva I, Weigt H, Jeske T, von Hirschhausen C (2005) Nodal pricing in the German electricity sector—welfare economics analysis, with particular reference to implementing offshore wind capacities. Electricity Markets Working Papers No. WP-EM-08a

  • Leuthold FU, Weigt H, von Hirschhausen C (2010) A large-scale spatial optimization model of the European electricity market. Netw Spat Econ. doi:10.1007/s11067-010-9148-1

  • Lijesen M (2007) The real-time price elasticity of electricity. Energ Econ 29(2):249–258. doi:10.1016/j.eneco.2006.08.008

    Article  Google Scholar 

  • Malaguzzi Valeri L (2009) Welfare and competition effects of electricity interconnection between Ireland and Great Britain. Energ Policy 37(11):4679–4688. doi:10.1016/j.enpol.2009.06.020

    Article  Google Scholar 

  • Meller E, Milojcic G, Wodopia FJ, Schöning G (2008) Jahrbuch der europäischen Energie- und Rohstoffwirtschaft 2009. VGE Verlag GmbH, Essen

    Google Scholar 

  • Migliavacca G (2011) Cost-benefit analysis and its application to the corridor EL2. REALISEGRID—WP3 Final Workshop, Rome

  • Ministère de l’Energie de Mines l’Eau et l’Environnement (2010) Investissements en moyens de production d’electricite d’origine renouvelable. Euro-Mediterranean Energy Forum, Brussels

  • Mueller L (2001) Handbuch der Elektrizitätswirtschaft. Technische, wirtschaftliche und rechtliche Grundlagen. Springer, Berlin

    Google Scholar 

  • Nabil S (2010) MASEN, Barcelona. http://www.dii-eumena.com/fileadmin/Daten/files/Saimi_Nabil_Dii_Conf_2010.pdf. Accessed 12 May 2011

  • Perras S (2014) Electricity transmission line planning: Success factors for transmission system operators to reduce public opposition. Eingereichte Dissertation. Technische Universität, Dresden, Lehrstuhl für Energiewirtschaft

  • Ryan (2005) Winter summary. http://www.nationalgrid.com/NR/rdonlyres/8B895EB5-B828-47A9-A75B-B70A0DCE2DF2/5125/02WinterUpdate7Dec05.pdf. Accessed 11 July 2011

  • Sarasin Bank (2009) Solarwirtschaft - grüne Erholung in Sicht. Bank Sarasin & Cie AG, Basel

  • Schweizerische Energie-Stiftung (2009) Wasserkraft ist nicht gleich Wasserkraft. SES - Schweizerische Energie-Stiftung, Zurich

  • Siemens AG (2011) Ready for the future. Siemens erects power converter stations for HVDC link between France and Spain as part of the Trans-European Network. http://www.siemens.com/press/en/pressrelease/?press=/en/pressrelease/2011/power_transmission/ept201101032.htm. Accessed 15 June 2011

  • Swiss Federal Office of Energy (2007) Energy perspectives 2035. Summary

  • Swiss Federal Office of Energy (2009) Swiss electricity statistics 2009. Bern

  • The Electricity Forum (2011) Morocco to establish 2,000-MW solar project. http://www.electricityforum.com/news/sep10/Moroccotobuild2000MWsolarproject.html. Accessed 14 July 2011

  • van Son P (2011) Statement in press talk regarding Desertec Industrial Initiative. Parliamentary evening in Bavarian representation, Berlin

  • Wu F, Zheng F, Wen F (2006) Transmission investment and expansion planning in a restructured electricity market. Energy 31(6–7):954–966. doi:10.1016/j.energy.2005.03.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Perras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perras, S., Kunz, F. & Möst, D. New Spain: France Transmission Line: A Cost-Benefit Analysis. Z Energiewirtsch 39, 19–32 (2015). https://doi.org/10.1007/s12398-014-0144-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12398-014-0144-x

Keywords

Navigation