Skip to main content

Advertisement

Log in

Enhanced Extraction from Solid Foods and Biosuspensions by Pulsed Electrical Energy

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

The purpose of this article is to review matters dealing with application of electrical pulsed energy (pulsed electric field, pulsed ohmic heating and high voltage electrical discharges) for enhancing the solid–liquid extraction in the food industry. The quality of products (e.g., purity, color, texture, flavor and nutritients) extracted from solid foods (sugar beets, apples, grapes, etc.) and quality of proteins and polysaccharides extracted from biosuspensions (aqueous suspensions of yeast, e.coli cells, etc.) may be degraded by conventional mechanical, thermal or chemical pretreatment. The traditional treatments are restricted by temperature elevation and require high energy consumptions; moreover, chemical methods are based on application of unsafe organic solvents, enzymes and detergents. Physical treatments assisted by electrical pulsed energy are shown to be very remarkable for enhancing the solvent and pressure extraction and dehydration processes and of high interest for the food industry. This article provides an overview of the pulsed energy extraction technologies showing promise for commercial food processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Angersbach A, Knorr D (1997) High intensity electric field pulses as pretreatment for affecting dehydration characteristics and rehydration properties of potato cubes. Nahrung - Food 41:194–200

    Article  Google Scholar 

  2. Angersbach A, Heinz V, Knorr D (2000) Effects of pulsed electric fields on cell membranes in real food systems. Innovative Food Science and Emerging Technologies 1:135–149

    Article  CAS  Google Scholar 

  3. Angersbach A, Heinz V, Knorr D (2002) Evaluation of process-induced dimensional changes in the membrane structure of biological cells using impedance measurement. Biotechnol Prog 18(3):597–603

    Article  CAS  Google Scholar 

  4. Barbosa-Cánovas GV, Pothakamury UR, Palou E, Swanson BG (1998) Nonthermal preservation of foods. Marcel Dekker, New York

    Google Scholar 

  5. Barskaya AV, Kuretz BI, Lobanova GL (2000) Extraction of water soluble matters from vegetative raw material by electrical pulsed discharges. In: 1st International congress on radiation physics, high current electronics, and modification of materials, Tomsk, Russia, 533–535

  6. Bazhal M, Vorobiev E (2000) Electrical treatment of apple cossettes for intensifying juice pressing. J Sci Food Agric 80:1668–1674

    Article  CAS  Google Scholar 

  7. Bazhal MI, Lebovka NI, Vorobiev EI (2001) Pulsed electric field treatment of apple tissue during compression for juice extraction. J Food Eng 50:129–139

    Article  Google Scholar 

  8. Bazhal MI, Lebovka NI, Vorobiev EI (2003) Optimisation of pulsed electric field strength for electroplasmolysis of vegetable tissues. Biosystems Eng 86:339–345

    Article  Google Scholar 

  9. Biss CH, Combes SA, Skudder PJ (1989) The development and application of ohmic heating for the continuous processing of particulate food stuffs. In: Field RW, Howell JA (eds) Processing engineering in the food industry. Elsevier, London, pp 17–27

    Google Scholar 

  10. Bluhm H (2006) Pulsed power systems. Springer, New York

    Google Scholar 

  11. Bluhm H, Sack M (2008) Industrial—scale treatment of biological tissues with pulsed electric field. In: Vorobiev E, Lebovka N (eds) Electrotechnologies for extraction from food plants and biomaterials. Springer, New York, pp 237–269

    Google Scholar 

  12. Boussetta N, Lebovka N, Vorobiev E, Adenier H, Bedel-Cloutour C, Lanoisellé J-L (2009) Electrically assisted extraction of soluble matter from Chardonnay grape skins for polyphenols recovery. J Agric Food Chem 57:1491–1497

    Article  CAS  Google Scholar 

  13. Boussetta N, Lanoisellé J-L, Bedel-Cloutour C, Vorobiev E (2009) Extraction of polyphenols from grape pomace by high voltage electrical discharges: effect of sulphur dioxide, freezing process and temperature. J Food Eng 95(1):192–198

    Article  CAS  Google Scholar 

  14. Bouzrara H, Vorobiev E (2000) Beet juice extraction by pressing and pulsed electric fields. Int Sugar J CII(1216):194–200

  15. Bouzrara H (2001) Amélioration du pressage de produits végétaux par Champ Electrique Pulsé. Cas de la betterave à sucre. PhD thesis, UTC, Compiègne, France

  16. Bouzrara H, Vorobiev E (2003) Solid/liquid expression of cellular materials enhanced by pulsed electric field. Chemical Eng & Processing 42:249–257

    Article  CAS  Google Scholar 

  17. Chalermchat Y, Dejmek P (2005) Effect of pulsed electric field pretreatment on solid–liquid expression from potato tissue. J Food Eng 71:164–169

    Article  Google Scholar 

  18. Chalermchat Y, Malangone L, Dejmek P (2010) Electropermeabilization of apple tissue: effect of cell size, cell size distribution and cell orientation. Biosystems Engineering 105:357–366

    Article  Google Scholar 

  19. Corrales M, Toepfl S, Butz P, Knorr D, Tauscher B (2008) Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innovative Food Science and Emerging Technologies 9:85–91

    Article  CAS  Google Scholar 

  20. Dugand LR (1980) Natural antioxidants. In: Simic MG, Karel M (eds) Autooxidation in food and biological systems. Plenum Press, New York, pp 261–295

    Google Scholar 

  21. El-Belghiti K, Vorobiev E (2004) Mass transfer of sugar from beets enhanced by pulsed electric field. Trans IChemE 82:226–230

    CAS  Google Scholar 

  22. El-Belghiti K (2005) Effets d’un champ électrique pulsé sur le transfert de matière et sur les caractéristiques végétales. PhD thesis, UTC, Compiègne, France

  23. El-Belghiti K, Vorobiev E (2005) Kinetic model of sugar diffusion from sugar beet tissue treated by pulsed electric field. Journal of the Science of Food and Agriculture 85:213–218

    Article  CAS  Google Scholar 

  24. El-Belghiti K, Vorobiev E (2005) Modelling of solute aqueous extraction from carrots subjected to a pulsed electric field pre-treatment. Biosystems Engineering 90(3):289–294

    Google Scholar 

  25. El-Belghiti K, Moubarik R, Vorobiev E (2007) Use of moderate pulsed electric field, electrical discharges and ultrasonic irradiations to improve aqueous extraction of solutes from fennel (Foeniculum vulgare), unpublished data

  26. El Zakhem H, Lanoisellé J-L, Lebovka NI, Nonus M, Vorobiev E (2006) Behavior of yeast cells in aqueous suspension affected by pulsed electric field. J Colloid Interf Sci 300(2):553–563

    Article  CAS  Google Scholar 

  27. El Zakhem H, Lanoisellé J-L, Lebovka NI, Nonus M, Vorobiev E (2006) The early stages of Saccharomyces cerevisiae yeast suspensions damage in moderate pulsed electric fields. Colloids and Surfaces B479(2):189–197

    Google Scholar 

  28. Eshtiaghi MN, Knorr D (2002) High electric field pulse pretreatment: potential for sugar beet processing. J Food Eng 52:265–272

    Article  Google Scholar 

  29. Fincan M, Dejmek P (2002) In situ visualization of the effect of a pulsed electric field on plant tissue. J Food Eng 55:223–230

    Article  Google Scholar 

  30. Fincan M, DeVito F, Dejmek P (2004) Pulsed electric field treatment for solid–liquid extraction of red beetroot pigment. J Food Eng 64(3):381–388

    Article  Google Scholar 

  31. Galindo FG, Wadsö L, Vicente A, Dejmek P (2008) Exploring metabolic responses of potato tissue induced by electric pulses. Food Biophysics 3:352–360

    Article  Google Scholar 

  32. Galindo FG, Vernier PT, Dejmek P, Vicente A, Gundersen MA (2008) Pulsed electric field reduces the permeability of potato cell wall. Bioelectromagnetics 29:296–301

    Article  Google Scholar 

  33. Galindo FG, Dejmek P, Lundgren K, Rasmusson AG, Vicente A, Moritz T (2009) Metabolomic evaluation of pulsed electric field-induced stress on potato tissue. Planta 230:469–479

    Article  CAS  Google Scholar 

  34. Ganeva V, Galutzov B, Teissié J (2003) High yield electroextraction of proteins from yeast by a flow process. Anal Biochem 315(1):77–84

    Article  CAS  Google Scholar 

  35. Grémy-Gros C, Lanoisellé J-L, Vorobiev E (2008) Application of high-voltage electrical discharges for the aqueous extraction from oilseeds and other plants. In: Vorobiev E, Lebovka N (eds) Electrotechnologies for extraction from food plants and biomaterials. Springer, New York, pp 217–236

    Google Scholar 

  36. Grimi N, Praporscic I, Lebovka N, Vorobiev E (2007) Selective extraction from carrot slices by pressing and washing enhanced by pulsed electric fields. Sep Purif Technol 58(2):267–273

    Article  CAS  Google Scholar 

  37. Grimi N, Vorobiev E, Vaxelaire J (2008) Juice extraction from sugar beet slices by belt filter press: effect of pulsed electric field and operating parameters. In: 14th World congress of food science and technology, 19–23 October 2008, Shanghai, China, TS24-29, 554

  38. Grimi N (2009) Vers l’intensification du pressage industriel des agroressources par champs électriques pulsés: étude multi-échelles. PhD thesis, UTC, Compiègne, France

  39. Grimi N, Lebovka N, Vorobiev E, Vaxelaire J (2009) Compressing behaviour and texture evaluation for potatoes pretreated by pulsed electric field. Journal of Texture Studies 40:208–224

    Article  Google Scholar 

  40. Grimi N, Lebovka M, Vorobiev E, Vaxelaire J (2009b) Effect of a pulsed electric field treatment on expression behaviour and juice quality of Chardonnay grape. Food Biophys (in press)

  41. Grimi N, Mamouni F, Lebovka N, Vorobiev E, Vaxelaire J (2010) Acoustic impulse response in apple tissues treated by pulsed electric field. Biosystems Engineering 105:266–272

    Article  Google Scholar 

  42. Gros C, Lanoisellé J-L, Vorobiev E (2003) Towards an alternative extraction process for linseed oil. Chem Eng Res Des 81(9):1059–1065

    Article  CAS  Google Scholar 

  43. Jaeger H, Balasa A, Knorr D (2008) Food industry applications for pulsed electric fields. In: Vorobiev E, Lebovka N (eds) Electrotechnologies for extraction from food plants and biomaterials. Springer, New York, pp 181–216

    Google Scholar 

  44. Jemai AB, Vorobiev E (2002) Effect of Moderate Electric Field Pulse (MEFP) on the diffusion coefficient of soluble substances from apple slices. Int J Food Sci Technol 37:73–86

    Article  CAS  Google Scholar 

  45. Jemai AB, Vorobiev E (2003) Enhancing leaching from sugar beet cossettes by pulsed electric field. J Food Eng 59:405–412

    Article  Google Scholar 

  46. Jemai AB, Vorobiev E (2006) Pulsed electric field assisted pressing of sugar beet slices: towards a novel process of cold juice extraction. Biosystems Engineering 93(1):57–68

    Article  Google Scholar 

  47. Imai T, Uemura K, Ishida N, Yoshizaki S, Noguchi A (1995) Ohmic heating of Japanese white radish Rhaphanus sativus L. Int J Food Sci Technol 30(4):461–472

    CAS  Google Scholar 

  48. Kemp MR, Fryer PJ (2007) Enhancement of diffusion through foods using alternating electric fields. Innovative Food Science and Emerging Technologies 8:143–153

    Article  CAS  Google Scholar 

  49. Knorr D, Geulen M, Grahl T, Sitzmann W (1994) Food application of high electric field pulses. Trends in Food Science and Technology 5:71–75

    Article  CAS  Google Scholar 

  50. Kanduser M, Miklavcic D (2008) Electroporation in biological cell and tissue: an overview. In: Vorobiev E, Lebovka N (eds) Electrotechnologies for extraction from food plants and biomaterials. Springer, New York, pp 1–38

    Google Scholar 

  51. Kulshrestha S, Sastry SK (2003) Frequency and voltage effects on enhanced diffusion during moderate electric field (MEF) treatment. Innovative Food Science and Emerging Technologies 4:189–194

    Article  Google Scholar 

  52. Kulshrestha S, Sastry SK (2006) Low-frequency dielectric changes in cellular food material from ohmic heating: effect of end point temperature. Innovative Food Science and Emerging Technologies 7:257–262

    Article  Google Scholar 

  53. Kulshrestha SA, Sastry SK (2010) Changes in permeability of moderate electric field (MEF) treated vegetable tissue over time. Innovative Food Science and Emerging Technologies 11:78–83

    Article  CAS  Google Scholar 

  54. Lakkakula NR, Lima M, Walker T (2004) Rice bran stabilization and rice bran oil extraction using ohmic heating. Bioresour Technol 92:157–161

    Article  CAS  Google Scholar 

  55. Lazarenko BR, Fursov SP, Scheglov YA, Bordiyan VV, Chebanu VG (1977) Electroplasmolysis. Karta Moldavaneske, Kishinev, USSR (in Russian)

  56. Lebovka NI, Bazhal MI, Vorobiev E (2000) Simulation and experimental investigation of food material breakage using pulsed electric field treatment. J Food Eng 44:213–223

    Article  Google Scholar 

  57. Lebovka NI, Bazhal MI, Vorobiev E (2001) Pulsed electric field breakage of cellular tissues: visualization of percolative Properties. Innovative Food Science and Emerging Technologies 2:113–125

    Article  Google Scholar 

  58. Lebovka NI, Bazhal MI, Vorobiev EI (2002) Estimation of characteristic damage time of food materials in pulsed-electric fields. J Food Eng 54:337–346

    Article  Google Scholar 

  59. Lebovka NI, Praporscic I, Vorobiev E (2004) Effect of moderate thermal and pulsed electric field treatments on textural properties of carrots, potatoes and apples. Innovative Food Sci. & Emerging Technologies 5:9–16

    Article  Google Scholar 

  60. Lebovka NI, Praporscic I, Vorobiev E (2004) Combined treatment of apples by pulsed electric fields and by heating at moderate temperature. J Food Eng 65:211–217

    Article  Google Scholar 

  61. Lebovka NI, Praporscic I, Ghnimi S, Vorobiev E (2005) Does electroporation occur during the ohmic heating of food? J Food Sci 70(5):308–311

    Article  Google Scholar 

  62. Lebovka NI, Shynkaryk M, Vorobiev E (2007) Moderate electric fields treatment of sugarbeet tissues. Biosystems Engineering 96(1):47–56

    Article  Google Scholar 

  63. Li L, Ding L, Vorobiev E, Lanoiselle J-L (2009) The application of high voltage electrical discharge for oil extraction from oil meals of linseed, rapeseed and palm kernel in aqueous solution. In: Conference on food engineering CoFE 2009, April 5–8, 2009, Columbus, USA

  64. Lima M, Heskitt B, Sastry S (1999) The effect of frequency and wave form on the electrical conductivity—temperature profiles of turnip tissue. Journal of Food Process Engineering 22(1):41–54

    Article  Google Scholar 

  65. Lima M, Heskitt BF, Sastry SK (2001) Diffusion of beet dye during electrical and conventional heating at steady-state temperature. Journal of Food Process Engineering 24:331–340

    Article  Google Scholar 

  66. Loginova KV, Shynkaryk MV, Lebovka NI, Vorobiev E (2010) Acceleration of soluble matter extraction from chicory with pulsed electric fields. J Food Eng 96:374–379

    Article  Google Scholar 

  67. López N, Puértolas E, Condón S, Álvarez I, Raso J (2008) Effects of pulsed electric fields on the extraction of phenolic compounds during the fermentation of must of Tempranillo grapes. Innovative Food Science and Emerging Technologies 9:477–482

    Article  CAS  Google Scholar 

  68. López N, Puértolas E, Condón S, Álvarez I, Raso J (2008) Application of pulsed electric fields for improving the maceration process during vinification of red wine: influence of grape variety. Eur Food Res Technol 227:1099–1107

    Article  CAS  Google Scholar 

  69. López N, Puértolas E, Condón S, Raso J, Álvarez I (2009) Enhancement of the solid-liquid extraction of sucrose from sugar beet (Beta vulgaris) by pulsed electric fields. LWT - Food Science and Technology 42:1674–1680

    Article  CAS  Google Scholar 

  70. López N, Puértolas E, Condón S, Raso J, Álvarez I (2009) Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. J Food Eng 90(1):60–66

    Article  CAS  Google Scholar 

  71. López N, Puértolas E, Hernández-Orte P, Álvarez I, Raso J (2009) Effect of a pulsed electric field treatment on the anthocyanins composition and other quality parameters of Cabernet Sauvignon freshly fermented model wines obtained after different maceration times. LWT - Food Science and Technology 42(7):1225–1231

    Article  CAS  Google Scholar 

  72. McLellan MR, Kime RL, Lind KR (1991) Electroplasmolysis and other treatments to improve apple juice yield. Journal of Science of Food and Agriculture 57(2):303–306

    Article  CAS  Google Scholar 

  73. Pereira RN, Galindo FG, Vicente AA, Dejmek P (2009) Effects of pulsed electric field on the viscoelastic properties of potato tissue. Food Biophysics 4:229–239

    Article  Google Scholar 

  74. Povey M, Mason TJ (1998) Ultrasound in food processing, Blackie Academic & Professional, London

  75. Praporscic I, Ghnimi S, Vorobiev E (2005) Enhancement of pressing of sugar beet cuts by combined pulsed electric field and ohmic heating. Journal of Food Processing and Preservation 29(5–6):378–389

    Article  Google Scholar 

  76. Praporscic I, Lebovka NI, Ghnimi S, Vorobiev E (2006) Ohmically heated, enhanced expression of juice from apple and potato tissues. Biosystems Engineering 93(2):199–204

    Article  Google Scholar 

  77. Praporscic I, Shynkaryk M, Lebovka N, Vorobiev E (2007) Analysis of juice colour and dry matter content during pulsed electric field enhanced expression of soft plant tissues. J Food Eng 79(2):662–670

    Article  Google Scholar 

  78. Praporscic I, Lebovka N, Vorobiev E, Mietton-Peuchot M (2007) Pulsed electric field enhanced expression and juice quality of white grapes. Sep Purif Technol 52:520–526

    Article  CAS  Google Scholar 

  79. Puértolas E, Saldaña G, Condón S, Álvarez I, Raso J (2009) A comparison of the effect of macerating enzymes and pulsed electric fields technology on phenolic content and color of red wine. J Food Sci 74:C647–C652

    Article  CAS  Google Scholar 

  80. Puértolas E, López N, Saldaña G, Álvarez I, Raso J (2010) Evaluation of phenolic extraction during fermentation of red grapes treated by a continuus pulsed electric fields process at pilot-plant scale. J Food Eng 98:120–125

    Article  CAS  Google Scholar 

  81. Puértolas E, Hernández-Orte P, Sladaña G, Álvarez I, Raso J (2010) Improvement of winemaking process using pulsed electric fields at pilot-plant scale. Evolution of chromatic parameters and phenolic content of Cabernet Sauvignon red wines. Food Res Int 43:761–766

    Article  CAS  Google Scholar 

  82. Puértolas E, Saldaña G, Condón S, Álvarez I, Raso J (2010) Evolution of polyphenolic compounds in red wine from Cabernet Sauvignon grapes processed by pulsed electric fields during aging in bottle. Food Chem 119:1063–1070

    Article  CAS  Google Scholar 

  83. Rogov IA, Gorbatov AV (1974) Physical methods of foods processing. Pischevaja Promyshlennost, Moscow (in Russian)

    Google Scholar 

  84. Sastry SK (2005) Advances in Ohmic Heating and Moderate Electric Field (MEF) processing. In: Barbosa-Canovas G, Tapia MS, Cano MP (eds) Novel food processing technologies. CRC Press, New York, pp 491–499

    Google Scholar 

  85. Schilling S, Alber T, Toepfl S, Neidhart S, Knorr D, Schieber A, Carle R (2007) Effects of pulsed electric field treatment of apple mash on juice yield and quality attributes of apple juices. Innovative Food Science & Emerging Technologies 8:127–134

    Article  CAS  Google Scholar 

  86. Schreier PJR, Reid DG, Fryer PJ (1993) Enhanced diffusion during the electrical heating of foods. Int J Food Sci Tech 28:249–260

    Google Scholar 

  87. Schrive L, Grasmick A, Moussière S, Sarrade S (2006) Pulsed electric field treatment of Saccharomyces cerevisiae suspensions: a mechanistic approach coupling energy transfer, mass transfer and hydrodynamics. Biochemical Engineering Journal 27:212–224

    Article  CAS  Google Scholar 

  88. Sensoy I, Sastry SK (2004) Extraction using moderate electric fields. Journal of Food Science: Food Engineering and Physical Properties 69(1):7–13

    Google Scholar 

  89. Shynkaryk MV, Lebovka NI, Vorobiev E (2008) Pulsed electric fields and temperature effects on drying and rehydration of red beetroots. Drying Technology 26(6):695–704

    Article  Google Scholar 

  90. Shynkaryk MV, Lebovka NI, Lanoisellé J-L, Nonus M, Bedel-Clotour C, Vorobiev E (2009) Electrically-assisted extraction of bio-products using high pressure disruption of yeast cells (Saccharomyces cerevisiae). J Food Eng 92(2):189–195

    Article  Google Scholar 

  91. Toepfl S (2006) Pulsed electric fields (PEF) for permeabilization of cell membranes in food- and bioprocessing-applications, process and equipment design and cost analysis. PhD thesis, Institut für Lebensmitteltechnologie und Lebensmittelchemie, Berlin, Germany

  92. Van der Poel PW, Schiweck H, Schwartz T (1998) Sugar technology beet and cane sugar manufacture. Beet sugar development foundation, Denver

    Google Scholar 

  93. Vorobiev E, Jemai AB, Bouzrara H, Lebovka NI, Bazhal MI (2005) Pulsed electric field assisted extraction of juice from food plants. In: Barbosa-Canovas G, Tapia MS, Cano MP (eds) Novel food processing technologies. CRC Press, New York, pp 105–130

    Google Scholar 

  94. Vorobiev E, Lebovka NI (2006) Extraction of intercellular components by pulsed electric fields. In: Raso J, Heinz V (eds) Pulsed electric field technology for the food industry. Fundamentals and applications. Springer, New York, pp 153–194

    Chapter  Google Scholar 

  95. Vorobiev E, Lebovka NI (2008) Pulsed electric field induced effects in plant tissues: fundamental aspects and perspectives of application. In: Vorobiev E, Lebovka N (eds) Electrotechnologies for extraction from food plants and biomaterials. Springer, New York, pp 39–82

    Google Scholar 

  96. Wang WC, Sastry SK (2002) Effects of moderate electrothermal treatments on juice yield from cellular tissue. Innovative Food Science and Emerging Technologies 3:371–377

    Article  Google Scholar 

  97. Yin Y-G, Fan X-D, Liu F-X, Yu Q-Y, He G-D (2009) Fast extraction of pectin from apple pomace by high intensity pulsed electric field. Jilin Daxue Xuebao (Gongxueban)/J Jilin Univ (Engineering and Technology Edition) 39: 1224–1228

  98. Zeuthen P, Bogh-Sorensen L (eds) (2000) Food preservation technique. CRC Press, New York

    Google Scholar 

  99. Zhang Q, Monsalve-Gonzalez A, Qin BL, Barbosa-Canovas GV, Swanson BG (1994) Inactivation of Saccharomyces cerevisiae in apple juice by square wave and exponential-decay pulsed electric fields. Journal of Food Process Engineering 17:469–478

    Article  Google Scholar 

  100. Zimmermann U (1986) Electrical breakdown, electropermeabilization and electrofusion. Rev Physiol Biochem Pharmacol 105:175–256

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Université de Technologie de Compiègne and Pole Regional Génie des Procédés, Picardie, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Vorobiev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorobiev, E., Lebovka, N. Enhanced Extraction from Solid Foods and Biosuspensions by Pulsed Electrical Energy. Food Eng. Rev. 2, 95–108 (2010). https://doi.org/10.1007/s12393-010-9021-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-010-9021-5

Keywords

Navigation