Skip to main content
Log in

Isolation and Characterization of Cellulose from Sweet Sorghum Bagasse

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Sweet sorghum bagasse represents a potential low-cost biomass which can be valorized to produce different value-added lignocellulosic platform chemicals of economic importance. The focus of the present study is the pretreatment of sweet sorghum bagasse for efficient delignification, separation of pure cellulose and its structural characterization. Sweet sorghum bagasse was subjected to mechanical commutation followed by steam washing, organosolv extraction (methanol and toluene, 1:2) and alkaline hydrogen peroxide treatment for efficient delignification. Chemical analysis revealed that cellulose, hemicellulose and lignin content (per cent recovered) after different pretreatment was 720 g (98 %), 6 g (1.1 %) and 20 g (0.9 %), respectively. Structural characterization of untreated sweet sorghum bagasse and recovered cellulose was performed using FT-IR, CP-MAS 13C NMR spectroscopy, XRD, and thermogravimetric analyses. The cellulose preparation obtained after chemical pretreatments had typical cellulose structure with high crystallinity as compared to the untreated substrate. SEM micrographs revealed the surface topography wherein the waxy layer on the surface of this material disappeared and the texture became thinner and striated. The pretreatment methods employed were able to produce cellulose of high purity with >98 % lignin removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adsul, M.G., J.E. Ghule, R. Singh, H. Shaikh, K.B. Bastawde, D.V. Gokhale, and A.J. Varma. 2004. Polysaccharides from bagasse: Applications in cellulose and xylanase production. Carbohydrate Polymers 57: 67–72.

    Article  CAS  Google Scholar 

  • Atalla, R.H., and D.L. Van der Hart. 1984. Native cellulose-a composite of 2 distinct crystalline forms. Science 223: 283–285.

    Article  CAS  PubMed  Google Scholar 

  • Atalla, R.H., and D.L. Van der Hart. 1999. The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nuclear Magnetic Resonance 15: 1–19.

    Article  CAS  PubMed  Google Scholar 

  • Cao, W., C. Sun, R. Liu, R. Yin, and X. Wu. 2012. Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresource Technology 111: 215–221.

    Article  CAS  PubMed  Google Scholar 

  • Chang, V.S., and M.T. Holtzapple. 2000. Fundamental factors affecting biomass enzymatic reactivity. Applied Biochemistry and Biotechnology 84: 5–37.

    Article  PubMed  Google Scholar 

  • Chen, C., D. Boldor, G. Aita, and M. Walker. 2012. Ethanol production from sorghum by a microwave-assisted dilute ammonia pretreatment. Bioresource Technology 110: 190–197.

    Article  CAS  PubMed  Google Scholar 

  • Earl, W.L., and D.L. Van der Hart. 1981. Observations by high-resolution carbon-13 nuclear magnetic resonance of cellulose I related to morphology and crystal structure. Macromolecules 14: 570–574.

    Article  CAS  Google Scholar 

  • Geng, A., F. Xin, and J.Y. Ip. 2012. Ethanol production from horticultural waste treated by a modified organosolv method. Bioresource Technology 104: 715–721.

    Article  CAS  PubMed  Google Scholar 

  • Geun, Y.C., N.P. Nghiem, K.B. Hicks, and T.H. Kim. 2011. Pretreatment of corn stover using low-moisture anhydrous ammonia (LMAA) process. Bioresource Technology 102: 10028–10034.

    Article  Google Scholar 

  • Gil, A.M., and C.P. Neto. 1999. Solid-state NMR studies of wood and other lignocellulosic materials. Annual Reports on NMR Spectroscopy 37: 75–117.

    Article  CAS  Google Scholar 

  • Hsu, T.A. 1996. Pretreatment of biomass. In Handbook on bioethanol: Production and utilization, ed. C.E. Wyman, and P.H. Abelson. Washington, DC: Taylor and Francis.

    Google Scholar 

  • Huijgen, W.J.J., A.T. Smit, P.J. de Wild, and H. den Uil. 2012. Fractionation of wheat straw by prehydrolysis, organosolv delignification and enzymatic hydrolysis for production of sugars and lignin. Bioresource Technology 114: 389–398.

    Article  CAS  PubMed  Google Scholar 

  • Imai, T., and J. Sugiyama. 1998. Nanodomains of I-alpha and I-beta cellulose in algal microfibrils. Macromolecules 31: 6275–6279.

    Article  CAS  Google Scholar 

  • Kadla, J.F., and R.D. Gilbert. 2000. Cellulose structure: A review. Cellulose Chemistry and Technology 34: 197–216.

    CAS  Google Scholar 

  • Kemppainen, K., J. Inkinen, J. Uusitalo, T. Nakari-Setälä, and M. Siika-aho. 2012. Hot water extraction and steam explosion as pretreatments for ethanol production from spruce bark. Bioresource Technology 117: 131–139.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.W., K.S. Kim, J.S. Lee, S.M. Park, H.Y. Cho, J.C. Park, and J.S. Kim. 2011. Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid. Bioresource Technology 102: 8992–8999.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S., J.M. Park, J.W. Seo, and K.C. Ho. 2012. Sequential acid/alkali-pretreatment of empty palm fruit bunch fiber. Bioresource Technology 109: 229–233.

    Article  CAS  PubMed  Google Scholar 

  • Kristensen, J.B., L.G. Thygesen, C. Felby, H. Jørgensen, and T. Elder. 2008. Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnology of Biofuels 1: 5. doi:10.1186/1754-6834-1-5. [5 May 2014].

    Article  Google Scholar 

  • Li, B.-Z., V. Balan, Y.-J. Yuan, and B.E. Dale. 2010. Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresource Technology 101: 1285–1292.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Y., and S. Tanaka. 2006. Ethanol fermentation from biomass resources: current state and prospects. Applied Microbiology and Biotechnology 69: 627–642.

    Article  CAS  PubMed  Google Scholar 

  • Mansfield, S.D., and R. Meder. 2003. Cellulose hydrolysis: The role of monocomponent cellulases in crystalline cellulose degradation. Cellulose 10: 159–169.

    Article  CAS  Google Scholar 

  • McMillan, J.D. 1994. Pretreatment of lignocellulosic biomass. In Enzymatic Conversion of Biomass for Fuels Production, ed. M.E. Himmel, J.O. Baker, and R.P. Overend, 292–324. Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Mesa, L., E. Gonzalez, C. Cara, M. Gonzalez, E. Castro, and S.I. Mussatto. 2011. The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chemical Engineering Journal 168: 1157–1162.

    Article  CAS  Google Scholar 

  • Morrison, I.M. 1972a. Semimicro method for determination of lignin and its uses in predicting the digestibility of forage crops. Journal of Science Food and Agriculture 23: 455–463.

    Article  CAS  Google Scholar 

  • Morrison, I.M. 1972b. Improvements in acetyl bromine technique to determine lignin and digestibility and its application to legumes. Journal of Science Food and Agriculture 23: 1463–1469.

    Article  CAS  Google Scholar 

  • Nguyen, T.A.D., K.R. Kim, S.J. Han, H.Y. Cho, J.W. Kim, S.M. Park, J.C. Park, and S.J. Sim. 2010. Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresource Technology 101: 7432–7438.

    Article  CAS  PubMed  Google Scholar 

  • Oh, S.Y., D.I. Yoo, Y. Shin, H.C. Kim, H.Y. Kim, Y.S. Chung, W.H. Park, and J.H. Youk. 2005. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydrate Polymers 340: 2376–2391.

    Article  CAS  Google Scholar 

  • Ouajai, S., and R.A. Shanks. 2005. Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polymer Degradation and Stability 89: 327–335.

    Article  CAS  Google Scholar 

  • Ramos, L.P. 2003. The chemistry involved in the steam treatment of lignocellulosic materials. Quimica Nova 26: 863–871.

    Article  CAS  Google Scholar 

  • Reddy, N., and Y. Yang. 2005. Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology 23: 22–27.

    Article  CAS  PubMed  Google Scholar 

  • Rocha, G.J.M., C. Martin, V.F.N. da Silva, E.O. Gomez, and A.R. Gonçalves. 2012. Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification. Bioresource Technology 111: 447–452.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, H., S. Padmanabhan, G. Poon, and J.M. Prausnitz. 2011. Addition of ammonia and/or oxygen to an ionic liquid for delignification of Miscanthus. Bioresource Technology 102: 7946–7952.

    Article  CAS  PubMed  Google Scholar 

  • Salvi, D.A., G.M. Aita, D. Robert, and V. Bazan. 2010. Dilute ammonia pretreatment of sorghum and its effectiveness on enzyme hydrolysis and ethanol fermentation. Applied Biochemistry and Biotechnology 161: 67–74.

    Article  CAS  PubMed  Google Scholar 

  • Sipos, B., J. Réczey, Z. Somorai, Z. Kádár, D. Dienes, and K. Réczey. 2008. Sweet sorghum as feedstock for ethanol production: enzymatic hydrolysis of steam-pretreated bagasse. Applied Biochemistry and Biotechnology 153: 151–162.

    Article  PubMed  Google Scholar 

  • Shen, F., J.N. Saddler, R. Liu, L. Lin, S. Deng, Y. Zhang, G. Yang, H. Xiao, and Y. Li. 2011. Evaluation of steam pretreatment on sweet sorghum bagasse for enzymatic hydrolysis and bioethanol production. Carbohydrate Polymers 86: 1542–1548.

    Article  CAS  Google Scholar 

  • Sturcova, A., I. His, D.C. Apperley, J. Sugiyama, and M.C. Jarvis. 2004. Structural details of crystalline cellulose from higher plants. Biomacromolecules 5: 1333–1339.

    Article  CAS  PubMed  Google Scholar 

  • Sun, R.C., J. Tomkinson, Y.X. Wang, and B. Xiao. 2000. Physico-chemical and structural characterization of hemicelluloses from wheat straw by alkaline peroxide extraction. Polymer 41: 2647–2656.

    Article  CAS  Google Scholar 

  • Sun, X.F., R.C. Sun, J. Tomkinson, and M.S. Baird. 2004. Degradation of wheat straw lignin and hemicellulosic polymers by a totally chlorine-free method. Polymer Degradation and Stability 83: 47–57.

    Article  CAS  Google Scholar 

  • Updegraff, D.M. 1969. Semi-micro determination of cellulose in biological materials. Analytical Chemistry 32: 420–424.

    CAS  Google Scholar 

  • Viles, F.J., and L. Silverman. 1949. Determination of starch and cellulose with anthrone. Analytical Chemistry 21: 950–953.

    Article  CAS  Google Scholar 

  • Wada, M., T. Okano, J. Suguyama, and F. Horii. 1995. Characterization of tension and normally lignified wood cellulose in Populus maximowiczii. Cellulose 2: 223–233.

    Article  CAS  Google Scholar 

  • Walsh, P.B. 1991. Hydrogen peroxide: innovations in chemical pulp bleaching. Tappi Journal 74: 81–83.

    CAS  Google Scholar 

  • Wang, W., X. Zhaung, Z. Yuan, Q. Yu, W. Qi, Q. Wang, and X. Tan. 2012. High consistency enzymatic saccharification of sweet sorghum bagasse pretreated with liquid hot water. Bioresource Technology 108: 252–257.

    Article  CAS  PubMed  Google Scholar 

  • Yang, B., and C.E. Wyman. 2008. Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining 2: 26–40.

    Article  CAS  Google Scholar 

  • Young, L.Y., and A.C. Frazer. 1987. The fate of lignin and lignin derived compounds in anaerobic environment. Geomicrobiology 5: 261–293.

    Article  CAS  Google Scholar 

  • Yu, Q., X. Zhuang, Z. Yuan, W. Qi, Q. Wang, and X. Tan. 2011. The effect of metal salts on the decomposition of sweet sorghum bagasse in flow-through liquid hot water. Bioresource Technology 102: 3445–3450.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J., T. Zhang, J. Zhong, X. Zhang, and T. Tan. 2012. Biorefinery of sweet sorghum stem. Biotechnology Advances 30: 811–816.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., X. Ma, J. Yu, X. Zhang, and T. Tan. 2011. The effects of four different pretreatments on enzymatic hydrolysis of sweet sorghum bagasse. Bioresource Technology 102: 4585–4589.

    Article  CAS  PubMed  Google Scholar 

  • Zykwinska, A.W., M.C.J. Ralet, C.D. Garnier, and J.F.J. Thibault. 2005. Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiology 139: 397–407.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial assistance from the Department of Biotechnology, Government of India for executing the project. The authors are grateful to Dr. Belum V.S. Reddy, Principal Scientist, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Medak district, Andhra Pradesh, India for providing the sweet sorghum bagasse. The authors acknowledge the kind help extended by Dr. K. Ravi Kumar, Head and Mrs. Nilofer Rahman, X-ray Crystallographic Unit for the technical support on X-ray diffraction studies.

Conflict of interest

We declare that there is no conflict of interest with any researcher or funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ganesh Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 9,631 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh Kumar, C., Pradeep Kumar, M., Gupta, S. et al. Isolation and Characterization of Cellulose from Sweet Sorghum Bagasse. Sugar Tech 17, 395–403 (2015). https://doi.org/10.1007/s12355-014-0339-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-014-0339-9

Keywords

Navigation