Skip to main content
Log in

Patient preparation for cardiac fluorine-18 fluorodeoxyglucose positron emission tomography imaging of inflammation

  • CME Article Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Although the number of clinical applications for fluorine-18 fluorodeoxyglucose (18F-FDG) cardiac positron emission tomography (PET) has continued to grow, there remains a lack of consensus regarding the ideal method of suppressing normal myocardial glucose utilization for image optimization. This review describes various patient preparation protocols that have been used as well as the success rates achieved in different studies. Collectively, the available literature supports using a high-fat, no-carbohydrate diet for at least two meals with a fast of 4-12 hours prior to 18F-FDG PET imaging and suggests that isolated fasting for less than 12 hours and supplementation with food or drink just prior to imaging should be avoided. Each institution should adopt a protocol and continuously monitor its effectiveness with a goal to achieve adequate myocardial suppression in greater than 80% of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

FDG:

Fluorodeoxyglucose

PET:

Positron emission tomography

References

  1. Blankstein R, Lundbye J, Heller G. Proceedings of the ASNC cardiac PET summit meeting, May 12 2014, Baltimore MD. J Nucl Cardiol 2015;22:720–9.

    Article  PubMed  Google Scholar 

  2. Cautela J, Alessandrini S, Cammilleri S, Giorgi R, Richet H, Casalta JP, et al. Diagnostic yield of FDG positron-emission tomography/computed tomography in patients with CEID infection: A pilot study. Europace 2013;15:252–7.

    Article  PubMed  Google Scholar 

  3. Saby L, Laas O, Habib G, Cammilleri S, Mancini J, Tessonnier L, et al. Positron emission tomography/computed tomography for diagnosis of prosthetic valve endocarditis: Increased valvular 18F-fluorodeoxyglucose uptake as a novel major criterion. J Am Coll Cardiol 2013;61:2374–82.

    Article  PubMed  Google Scholar 

  4. Blankstein R, Osborne M, Naya M, Waller A, Kim CK, Murthy VL, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol 2014;21:166–74.

    Google Scholar 

  5. Morooka M, Moroi M, Ito K, Wu J, Nakagawa T, Kubota K, et al. Long fasting is effective in inhibiting physiological myocardial 18F-FDG uptake and for evaluating active lesion of cardiac sarcoidosis. EJNMMI Res 2014;4:1.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Manabe O, Yoshinaga K, Ohira H, Masuda A, Sato T, Tsujino I, et al. The effects of 18-h fasting with low-carbohydrate diet preparation on suppressed physiological myocardial 18F-fluorodeoxyglucose (FDG) uptake and possible minimal effects of unfractionated heparin use in patients with suspected cardiac involvement sarcoidosis. J Nucl Cardiol 2016;23:244–52.

    Article  PubMed  Google Scholar 

  7. Demeure F, Hanin FX, Bol A, Vincent MF, Pouleur AC, Gerber B, et al. A randomized trial on the optimization of 18F-FDG myocardial uptake suppression: Implications for vulnerable coronary plaque imaging. J Nucl Med 2014;55:1629–35.

    Article  CAS  PubMed  Google Scholar 

  8. Wykrzykowska J, Lehman S, Williams G, Parker JA, Palmer MR, Varkey S, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med 2009;50:563–8.

    Article  PubMed  Google Scholar 

  9. Depre C, Vanoverschelde JL, Taegtmeyer H. Glucose for the heart. Circulation 1999;99:578–88.

    Article  CAS  PubMed  Google Scholar 

  10. Mochizuki T, Tsukamoto E, Kuge Y, Kanegae K, Zhao S, Hikosaka K, et al. FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models. J Nucl Med 2001;42:1551–5.

    CAS  PubMed  Google Scholar 

  11. Nuutila P, Koivisto VA, Knuuti J, Ruotsalainen U, Teras M, Haaparanta M, et al. Glucose-free fatty acid cycle operates in heart and skeletal muscle in vivo. J Clin Invest 1992;89:1767–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamada S, Kubota K, Kubota K, Ido T, Tamahashi N. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med 1995;36:1301–6.

    CAS  PubMed  Google Scholar 

  13. Miyagawa M, Yokoyama R, Nishiyama Y, Ogimoto A, Higaki J, Mochizuki T. Positron emission tomography-computed tomography for imaging inflammatory cardiovascular disease Circ J. 2014;78:1302–10.

    Article  PubMed  Google Scholar 

  14. Bax JJ, Veening MA, Visser FC, van Lingen A, Heine RJ, Cornel JH, et al. Optimal metabolic conditions during fluorine-18 fluorodeoxyglucose imaging; A comparative study using different protocols. Eur J Nucl Med 1997;24:35–41.

    Article  CAS  PubMed  Google Scholar 

  15. Garfein O. Current concepts in cardiovascular physiology. Burlington: Elsevier Science; 2012. p. 565.

    Google Scholar 

  16. Tang R, Wang JT, Wang L, Le K, Huang Y, Hickey AJ, et al. Impact of patient preparation on the diagnostic performance of 18F-FDG PET in cardiac sarcoidosis: a systematic review and meta-analysis. Clin Nuc Med 2015. doi:10.1097/RLU.0000000000001063.

    Google Scholar 

  17. Harisankar CN, Mittal BR, Agarwal KL, Abrar ML, Bhattacharya A. Utility of high fat and low carbohydrate diet in suppressing myocardial FDG Uptake. J Nucl Cardiol 2011;18:926–36.

    Article  PubMed  Google Scholar 

  18. Soussan M, Brilley PY, Nunes H, Pop G, Ouvrier MJ, Naggara N, et al. Clinical value of a high-fat and low-carbohydrate diet before FDG-PET/CT for evaluation of patients with suspected cardiac sarcoidosis. J Nucl Cardiol 2013;20:120–7.

    Article  PubMed  Google Scholar 

  19. Cheng VY, Slomka PJ, Ahlen M, Thomson LE, Waxman AD, Berman DS. Impact of carbohydrate restriction with and without fatty acid loading on myocardial 18F-FDG uptake during PET: A randomized controlled trial. J Nucl Cardiol 2010;17:286–91.

    Article  PubMed  Google Scholar 

  20. Kobayashi Y, Kumita S, Fukushima Y, Ishihara K, Suda M, Sakurai M. Significant suppression of myocardial 18F-fluorodeoxyglucose uptake using 24-h carbohydrate restriction and a low-carbohydrate, high-fat diet. J Cardiol 2013;62:314–9.

    Article  PubMed  Google Scholar 

  21. Balink H, Hut E, Pol T, Flokstra FJ, Roef M. Suppression of 18F-FDG myocardial uptake using a fat-allowed, carbohydrate-restricted diet. J Nucl Med Technol 2011;39:185–9.

    Article  PubMed  Google Scholar 

  22. Kumar P, Patel CD, Singla S, Malhotra A. Effect of duration of fasting and diet on the myocardial uptake of fluoro-2-deoxyglucose (F-18 FDG) at rest. Indian J Nucl Med 2014;29:140–5.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Coulden R, Chung P, Sonnex E, Ibrahim Q, Maguire C, Abele J. Suppression of myocardial 18F-FDG uptake with a preparatory “Atkins-style” low-carbohydrate diet. Eur Radiol 2012;22:2221–8.

    Article  PubMed  Google Scholar 

  24. Scholtens AM, Verberne HJ, Budde RP, Lam MG. Additional heparin pre-administration improves cardiac glucose metabolism over low carbohydrate diet alone in 18F-FDG-PET imaging. J Nucl Med 2016;57:568–73.

    Article  PubMed  Google Scholar 

  25. Lum DP, Wandell S, Ko J, Koel MN. Reduction of myocardial 2-deoxy-2[18F]fluoro-d-glucose uptake artifacts in positron emission tomography using dietary carbohydrate restriction. Mol Imaging Biol 2002;4:232–7.

    Article  PubMed  Google Scholar 

  26. Lee HY, Nam HY, Shin SK. Comparison of myocardial F-18 uptake between overnight and non-overnight fasting in non-diabetic healthy subjects. Jpn J Radiol 2015;33:385–91.

    Article  CAS  PubMed  Google Scholar 

  27. Asmal AC, Leary WP, Thandroyen F, Botha J, Wattrus S. A dose-response study of the anticoagulant and lipolytic activities of heparin in normal subjects. Br J Clin Pharmacol 1979;7:531–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gaeta C, Fernández Y, Pavía J, et al. Reduced myocardial 18F-FDG uptake after calcium channel blocker administration: Initial observation for a potential new method to improve plaque detection. Eur J Nucl Med Mol Imaging 2011;38:2018–24.

    Article  CAS  PubMed  Google Scholar 

  29. Japanese Society of Sarcoidosis and Other Granulomatous Disorders. Diagnostic standard and guideline for sarcoidosis. Tokyo: Japanese Ministry of Health, Labour and Welfare; 2006. p. 6.

    Google Scholar 

  30. Soejima K, Yada H. The work-up and management of patients with apparent or subclinical cardiac sarcoidosis: With emphasis on the associated heart rhythm abnormalities. J Cardiovasc Electrophysiol 2009;20:578–83.

    Article  PubMed  Google Scholar 

  31. Patel MR, Cawley PC, Heitner JF, Klem I, Parker MA, Jaroudi WA, et al. Detection of myocardial damage in patients with sarcoidosis. Circulation 2009;120:1969–77.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dorbala S, Di Carli MF, Delbeke D, Abbara S, DePuey EG, Dilsizian V, et al. SNMMI/ASNC/SCCT guideline for cardiac SPECT/CT and PET/CT 1.0. J Nucl Med 2013;54:1485–507.

    Article  PubMed  Google Scholar 

  33. Vik-Mo H, Mjøs OD. Influence of free fatty acids on myocardial oxygen consumption and ischemic injury. Am J Cardiol 1981;2:361–5.

    Article  Google Scholar 

Download references

Disclosure

Dr Murthy owns stock in General Electric, Cardinal Health and Mallinckrodt. Drs Osborne, Hulten, Skali, Taqueti, Dorbala, DiCarli and Blankstein have no disclosures or conflicts of interest related to this publication. The opinions and assertions contained herein are the authors’ alone and do not represent the views of the Walter Reed National Military Medical Center, the US Army, or the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Osborne MD.

Additional information

See related editorial, doi:10.1007/s12350-016-0508-1

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osborne, M.T., Hulten, E.A., Murthy, V.L. et al. Patient preparation for cardiac fluorine-18 fluorodeoxyglucose positron emission tomography imaging of inflammation. J. Nucl. Cardiol. 24, 86–99 (2017). https://doi.org/10.1007/s12350-016-0502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-016-0502-7

Keywords

Navigation