Skip to main content
Log in

Cognitive Deficits in Machado–Joseph Disease Correlate with Hypoperfusion of Visual System Areas

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Cognitive and olfactory impairments have previously been demonstrated in patients with spinocerebellar ataxia type 3 (SCA3), also known as Machado–Joseph disease (MJD)—SCA3/MJD. We investigated changes in regional cerebral blood flow (rCBF) using single-photon emission computed tomography (SPECT) imaging in a cohort of Brazilian patients with SCA3/MJD. The aim of the present study was to evaluate the correlation among rCBF, cognitive deficits, and olfactory dysfunction in SCA3/MJD. Twenty-nine genetically confirmed SCA3/MJD patients and 25 control subjects were enrolled in the study. The severity of cerebellar symptoms was measured using the International Cooperative Ataxia Rating Scale and the Scale for the Assessment and Rating of Ataxia. Psychiatric symptoms were evaluated by the Hamilton Anxiety Scale and Beck Depression Inventory. The neuropsychological assessment consisted of Spatial Span, Symbol Search, Picture Completion, the Stroop Color Word Test, Trail Making Test (TMT), and Phonemic Verbal Fluency. Subjects were also submitted to odor identification evaluation using the 16-item Sniffin’ Sticks. SPECT was performed using ethyl cysteine dimer labeled with technetium-99m. SCA3/MJD patients showed reduced brain perfusion in the cerebellum, temporal, limbic, and occipital lobes compared to control subjects (pFDR <0.001). A significant positive correlation was found between the Picture Completion test and perfusion of the left parahippocampal gyrus and basal ganglia in the patient group as well as a negative correlation between the TMT part A and bilateral thalamus perfusion. The visuospatial system is affected in patients with SCA3/MJD and may be responsible for the cognitive deficits seen in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100:443–54.

    Article  PubMed  CAS  Google Scholar 

  2. Schmahmann JD. An emerging concept. The cerebellar contribution to higher function. Arch Neurol. 1991;48:1178–87.

    Article  PubMed  CAS  Google Scholar 

  3. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    Article  PubMed  Google Scholar 

  4. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44:489–501.

    Article  PubMed  Google Scholar 

  5. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.

    Article  PubMed  Google Scholar 

  6. Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.

    Article  PubMed  Google Scholar 

  7. Lima L, Coutinho P. Clinical criteria for diagnosis of Machado-Joseph disease: report of a non-Azorean Portuguese family. Neurology. 1980;30:319–22.

    Article  PubMed  CAS  Google Scholar 

  8. Jardim LB, Pereira ML, Silveira I, Ferro A, Sequeiros J, Giugliani R. Neurologic findings in Machado-Joseph disease: relation with disease duration, subtypes, and (CAG)n. Arch Neurol. 2001;58:899–904.

    Article  PubMed  CAS  Google Scholar 

  9. Braga-Neto P, Felicio AC, Pedroso JL, Dutra LA, Bertolucci PHF, Gabbai AA, et al. Clinical correlates of olfactory dysfunction in spinocerebellar ataxia type 3. Parkinsonism Relat Disord. 2011;17:353–6.

    Article  PubMed  CAS  Google Scholar 

  10. Pedroso JL, Braga-Neto P, Felício AC, Dutra LA, Santos WAC, Do Prado GF, et al. Sleep disorders in Machado–Joseph disease: frequency, discriminative thresholds, predictive values and correlation with ataxia-related motor and non-motor features. Cerebellum. 2011;10:291–5.

    Article  PubMed  Google Scholar 

  11. Radvany J, Camargo CHP, Costa ZM, Fonseca NC, Nascimento ED. Machado Joseph disease of Azorean ancestry in Brazil: the Catarina kindred. Neurological, neuroimaging, psychiatric and neuropsychological findings in the largest known family, the Catarina kindred. Arq Neuropsiquiatr. 1993;51:21–30.

    Article  PubMed  CAS  Google Scholar 

  12. Bürk K, Globas C, Bösch S, Klockgether T, Zühlke C, Daum I, et al. Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol. 2003;250:207–11.

    Article  PubMed  Google Scholar 

  13. Klinke I, Minnerop M, Schmitz-Hübsch T, Hendriks M, Klockgether T, Wüllner U, et al. Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum. 2010;9:433–42.

    Article  PubMed  Google Scholar 

  14. Zawacki TM, Grace J, Friedman JH, Sudarsky L. Executive and emotional dysfunction in Machado-Joseph disease. Mov Disord. 2002;17:1004–10.

    Article  PubMed  Google Scholar 

  15. Maruff P, Tyler P, Burt T, Currie B, Burns C, Currie J. Cognitive deficits in Machado-Joseph disease. Ann Neurol. 1996;40:421–7.

    Article  PubMed  CAS  Google Scholar 

  16. Kawai Y, Takeda A, Abe Y, Washimi Y, Tanaka F, Sobue G. Cognitive impairments in Machado-Joseph disease. Arch Neurol. 2004;61:1757–60.

    Article  PubMed  Google Scholar 

  17. Braga-Neto P, Pedroso JL, Alessi H, Dutra LA, Felício AC, Minett T, et al. (2012) Cerebellar cognitive affective syndrome in Machado Joseph disease: core clinical features. Cerebellum. doi:10.1007/s12311-011-0318-6

  18. Manto M, Lorivel T. Cognitive repercussions of hereditary cerebellar disorders. Cortex. 2011;47:81–10.

    Article  PubMed  Google Scholar 

  19. Abele M, Riet A, Hummel T, Klockgether T, Wüllner U. Olfactory dysfunction in cerebellar ataxia and multiple system atrophy. J Neurol. 2003;250:1453–5.

    Article  PubMed  Google Scholar 

  20. Connelly T, Farmer JM, Lynch DR, Doty RL. Olfactory dysfunction in degenerative ataxias. J Neurol Neurosurg Psychiatr. 2003;74:1435–7.

    Article  PubMed  CAS  Google Scholar 

  21. Velázquez-Pérez L, Fernandez-Ruiz J, Díaz R, González RP, Ochoa NC, Cruz GS, et al. Spinocerebellar ataxia type 2 olfactory impairment shows a pattern similar to other major neurodegenerative diseases. J Neurol. 2006;253:1165–9.

    Article  PubMed  Google Scholar 

  22. Hawkes C. Olfaction in neurodegenerative disorder. Mov Disord. 2003;18(4):364–72.

    Article  PubMed  Google Scholar 

  23. Takahashi N, Odano I, Nishihara M, Yuasa T, Sakai K. Regional cerebral blood flow measured with N-isopropyl-p-[123I]iodoamphetamine single-photon emission tomography in patients with Joseph disease. Eur J Nucl Med. 1994;21:615–20.

    Article  PubMed  CAS  Google Scholar 

  24. Etchebehere EC, Cendes F, Lopes-Cendes I, Pereira JA, Lima MC, Sansana CR, et al. Brain single-photon emission computed tomography and magnetic resonance imaging in Machado-Joseph disease. Arch Neurol. 2001;58:1257–63.

    Article  PubMed  CAS  Google Scholar 

  25. Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome: the Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci. 1997;145:205–11.

    Article  PubMed  CAS  Google Scholar 

  26. Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66:1717–20.

    Article  PubMed  Google Scholar 

  27. Braga-Neto P, Godeiro-Junior C, Dutra LA, Pedroso JL, Barsottini OG. Translation and validation into Brazilian version of the Scale of the Assessment and Rating of Ataxia (SARA). Arq Neuropsiquiatr. 2010;68:228–30.

    Article  PubMed  Google Scholar 

  28. Wechsler D. Wechsler memory scale–revised manual. San Antonio: Psychological Corporation; 1987.

  29. Wechsler D. Wechsler adult intelligence scale, 3rd edition (WAIS III): test manual. 3rd ed. New York: The Psychological Corporation; 1997.

    Google Scholar 

  30. Weschsler D. WAIS-III: Escala de inteligência para adultos: Manual para administração e avaliação. 1st ed. São Paulo: Casa do Psicólogo; 2004.

  31. Spreen O, Strauss E. A compendium of neuropsychological tests. 2nd ed. New York: Oxford University Press; 1998.

    Google Scholar 

  32. Reitan R. Validity of the trail making test as an indicator of organic brain damage. Percept Motor Skill. 1958;8:271–6.

    Google Scholar 

  33. Lezak MD. Neuropsychological assessment. New York: Oxford University Press; 2004.

    Google Scholar 

  34. Silveira-Moriyama L, Carvalho Mde J, Katzenschlager R, Petrie A, Ranvaud R, Barbosa ER, et al. The use of smell identification tests in diagnosis of Parkinson’s disease in Brazil. Mov Disord. 2008;23:2328–34.

    Article  PubMed  Google Scholar 

  35. Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005;26:839–51.

    Google Scholar 

  36. Rüb U, Brunt ER, Deller T. New insights into the pathoanatomy of spinocerebellar ataxia type 3 (Machado Joseph disease). Curr Opin Neurol. 2008;21:111–6.

    Article  PubMed  Google Scholar 

  37. Paulson HL, Das SS, Crino PB, Perez MK, Patel SC, Gotsdiner D, et al. Machado-Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann Neurol. 1997;41:453–62.

    Article  PubMed  CAS  Google Scholar 

  38. Yamada M, Hayashi S, Tsuji S, Takahashi H. Involvement of the cerebral cortex and autonomic ganglia in Machado-Joseph disease. Acta Neuropathol. 2001;101:140–4.

    PubMed  CAS  Google Scholar 

  39. D'Abreu A, França Jr MC, Yasuda CL, Campos BA, Lopes-Cendes I, Cendes F. Neocortical atrophy in Machado-Joseph disease: a longitudinal neuroimaging study. J Neuroimaging. 2012. doi:10.1111/j.1552-6569.2011.00614.x

  40. Leh SE, Petrides M, Strafella AP. The neural circuitry of executive functions in healthy subjects and Parkinson's disease. Neuropsychopharmacology. 2010;35:70–85.

    Article  PubMed  Google Scholar 

  41. Kravitz DJ, Saleem KS, Baker CI, Mishkin M. A new neural framework for visuospatial processing. Nat Rev Neurosci. 2011;12:217–30.

    Article  PubMed  CAS  Google Scholar 

  42. Possin KL. Visual spatial cognition in neurodegenerative disease. Neurocase. 2010;16:466–87.

    Article  PubMed  Google Scholar 

  43. Doeller CF, Kaplan R. Parahippocampal cortex: translating vision into space. Curr Biol. 2011;21(15):R589–91.

    Article  PubMed  CAS  Google Scholar 

  44. Macevoy SP, Epstein RA. Constructing scenes from objects in human occipitotemporal cortex. Nat Neurosci. 2011;14:1323–9.

    Article  PubMed  CAS  Google Scholar 

  45. Schmahmann JD, Pandya DN. Disconnection syndromes of basal ganglia, thalamus and cerebrocerebellar systems. Cortex. 2008;44:1037–66.

    Article  PubMed  Google Scholar 

  46. Middleton FA, Strick PL. Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn. 2000;42:183–200.

    Article  PubMed  CAS  Google Scholar 

  47. Bostan AC, Strick PL. The cerebellum and basal ganglia are interconnected. Neuropsychol Rev. 2010;20:261–70.

    Article  PubMed  Google Scholar 

  48. Rüb U, de Vos RA, Brunt ER, Sebestény T, Schöls L, Auburger G, et al. Spinocerebellar ataxia type 3 (SCA3): thalamic neurodegeneration occurs independently from thalamic ataxin-3 immunopositive neuronal intranuclear inclusions. Brain Pathol. 2006;16:218–27.

    Article  PubMed  Google Scholar 

  49. De Oliveira MS, D'Abreu A, França Jr MC, Lopes-Cendes I, Cendes F, Castellano G. MRI-Texture analysis of corpus callosum, thalamus, putamen, and caudate in Machado-Joseph disease. J Neuroimaging. 2012. doi:10.1111/j.1552-6569.2010.00553.x

  50. Crowe SF. The differential contribution of mental tracking, cognitive flexibility, visual search, and motor speed to performance on parts A and B of the Trail Making Test. J Clin Psychol. 1998;54:585–91.

    Article  PubMed  CAS  Google Scholar 

  51. Tanaka M, Kunimatsu J. Contribution of the central thalamus to the generation of volitional saccades. Eur J Neurosci. 2011;33:2046–57.

    Article  PubMed  Google Scholar 

  52. Saalmann YB, Kastner S. Cognitive and perceptual functions of the visual thalamus. Neuron. 2011;28(71):209–23.

    Article  Google Scholar 

  53. Molinari M, Leggio MG. Cerebellar information processing and visuospatial functions. Cerebellum. 2007;6:214–20.

    Article  PubMed  Google Scholar 

  54. Meyer JS, Obara K, Muramatsu K. Diaschisis. Neurol Res. 1993;15:362–6.

    PubMed  CAS  Google Scholar 

  55. Kim YT, Shin SM, Lee WY, Kim GM, Jin DK. Expression of expanded polyglutamine protein induces behavioral changes in Drosophila (polyglutamine-induced changes in Drosophila). Cell Mol Neurobiol. 2004;24:109–22.

    Article  PubMed  CAS  Google Scholar 

  56. Goti D, Katzen SM, Mez J, Kurtis N, Kiluk J, Ben-Haïem L, et al. A mutant ataxin-3 putative-cleavage fragment in brains of Machado-Joseph disease patients and transgenic mice is cytotoxic above a critical concentration. J Neurosci. 2004;24:10266–79.

    Article  PubMed  CAS  Google Scholar 

  57. Sobel N, Prabhakaran V, Hartley CA, Desmond JE, Zhao Z, Glover GH, et al. Odorant-induced and sniff-induced activation in the cerebellum of the human. J Neurosci. 1998;18(21):8990–9001.

    PubMed  CAS  Google Scholar 

  58. Qureshy A, Kawashima R, Imran MB, Sugiura M, Goto R, Okada K, Inoue K, et al. Functional mapping of human brain in olfactory processing: a PET study. J Neurophysiol. 2000;84:1656–66.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). We would like to thank the patients, their families, and the health volunteers for participating in this study.

Conflict of interest

Information concerning all sources of financial support and funding for the preceding 12 months is disclosed below, regardless of relationship to the current manuscript, submitted under the following suggested categories. Rodrigo A. Bressan was a consultant and a member of the advisory board of AstraZeneca and Janssen-Cilag; had partnerships with FAPESP, CNPq, and Instituto Albert Einstein de Ensino e Pesquisa; received honoraria from Eli Lilly, AstraZeneca, Janssen-Cilag, and Novartis; and received grants from FAPESP, CNPq, and Instituto Albert Einstein de Ensino e Pesquisa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Braga-Neto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braga-Neto, P., Dutra, L.A., Pedroso, J.L. et al. Cognitive Deficits in Machado–Joseph Disease Correlate with Hypoperfusion of Visual System Areas. Cerebellum 11, 1037–1044 (2012). https://doi.org/10.1007/s12311-012-0354-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-012-0354-x

Keywords

Navigation