Skip to main content
Log in

Simulating squeeze flows in multiaxial laminates: towards fully 3D mixed formulations

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Thermoplastic composites are widely considered in structural parts. In this paper attention is paid to squeeze flow of continuous fiber laminates. In the case of unidirectional prepregs, the ply constitutive equation is modeled as a transversally isotropic fluid, that must satisfy both the fiber inextensibility as well as the fluid incompressibility. When laminate is squeezed the flow kinematics exhibits a complex dependency along the laminate thickness requiring a detailed velocity description through the thickness. In a former work the solution making use of an in-plane-out-of-plane separated representation within the PGD – Poper Generalized Decomposition – framework was successfully accomplished when both kinematic constraints (inextensibility and incompressibility) were introduced using a penalty formulation for circumventing the LBB constraints. However, such a formulation makes difficult the calculation on fiber tractions and compression forces, the last required in rheological characterizations. In this paper the former penalty formulation is substituted by a mixed formulation that makes use of two Lagrange multipliers, while addressing the LBB stability conditions within the separated representation framework, questions never until now addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Aghighi S, Ammar A, Metivier C, Normandin M, Chinesta F (2013) Non incremental transient solution of the Rayleigh-Bénard convection model using the PGD. J Non-Newtonian Fluid Mech 200:65–78

    Article  Google Scholar 

  2. Aghighi MS, Ammar A,Metivier C, Chinesta F (2015) Parametric solution of the Rayleigh-Bénard convection model by using the PGD: application to nanofluids. Int J Numer Methods Heat Fluid Flow 25(6):1252–1281

  3. Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Non-Newtonian Fluid Mech 139:153–176

    Article  MATH  Google Scholar 

  4. Barnes JA, Cogswell FN (1989) Transverse flow processes in continuous fibre-reinforced thermoplastic composites. Composites 20/1:38–42

    Article  Google Scholar 

  5. Bersee HEN, Beukers A (2003) Consolidation of thermoplastic composites. J Thermoplast Compos Mater 16/5:433–455

    Article  Google Scholar 

  6. Bognet B, Leygue A, Chinesta F, Poitou A, Bordeu F (2012) Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Comput Methods Appl Mech Eng 201:1–12

    Article  MATH  Google Scholar 

  7. Chinesta F, Ammar A, Leygue A, Keunings R (2011) An overview of the proper generalized decomposition with applications in computational rheology. J Non-Newtonian Fluid Mech 166:578–592

    Article  MATH  Google Scholar 

  8. Chinesta F, Leygue A, Bognet B, Ghnatios C, Poulhaon F, Bordeu F, Barasinski A, Poitou A, Chatel S, Maison-Le-Poec S (2014) First steps towards an advanced simulation of composites manufacturing by automated tape placement. Int J Mater Form 7(1):81–92. http://www.springerlink.com/index/10.1007/s12289-012-1112-9

  9. Ericksen JL (1959) Anisotropic fluids. Archive for rational mechanics and analysis, 231–237

  10. Ghnatios C, Chinesta F, Binetruy C (2015) The squeeze flow of composite laminates. Int J Mater Form 8:73–83

    Article  Google Scholar 

  11. Ghnatios C, Abisset-Chavanne E, Binetruy C, Chinesta F, Advani S 3D modeling of squeeze flow of multiaxial laminates. J Non-Newtonian Fluid Mech. In Press. doi:10.1016/j.jnnfm.2016.06.004

  12. Goshawk JA, Navez VP, Jones RS (1997) Squeezing flow of continuous fibre-reinforced composites. J Non-Newtonian Fluid Mech 73/3:327–342

    Article  Google Scholar 

  13. Groves DJ, Bellamy AM, Stocks DM (1992) Anisotropic rheology of continuous fibre thermoplastic composites. Composites 23/2:75–80

    Article  Google Scholar 

  14. Gutowski TG, Cai Z, Bauer S, Boucher D, Kingery J, Wineman S (1987) Consolidation experiments for laminate composites. J Compos Mater 21/7:650–669

    Article  Google Scholar 

  15. Shuler SF, Advani SG (1996) Transverse squeeze flow of concentrated aligned fibers in viscous fluids. J Non-Newtonian Fluid Mech 65:47–74

    Article  Google Scholar 

  16. Shuler SF, Advani S (1997) Flow instabilities during the squeeze flow of multiaxial laminates. J Compos Mater 31/21:2156–2160

    Google Scholar 

  17. Spencer AJM (2000) Theory of fabric-reinforced viscous fluids. Compos Part A 31:1311–1321

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Chinesta.

Ethics declarations

The authors declare that they have no conflict of interest.

Appendix: A: Separated representation of the Stokes weak form

Appendix: A: Separated representation of the Stokes weak form

The efficient computer implementation of the separated representation constructor discussed in “Separated representation constructor” section needs a separated form of the flow problem expressed in a weak form (7). For that purpose we first consider the second term D :D, that takes into account expression (5) as follows

$$\begin{array}{@{}rcl@{}} 4 \mathbf{D}^{\ast} : \mathbf{D} &=& \nabla \mathbf{v}^{\ast} : \nabla \mathbf{v} + \nabla \mathbf{v}^{\ast} : (\nabla \mathbf{v})^{T} \\&&+ (\nabla \mathbf{v}^{\ast})^{T} : \nabla \mathbf{v} + (\nabla \mathbf{v}^{\ast})^{T} : (\nabla \mathbf{v})^{T}. \end{array} $$
(54)

The simplest choice of the test function v (x,z) is

$$ \mathbf{v}^{\ast}(\mathbf{x}, z) = \mathbf{P}^{\ast} (\mathbf{x}) \circ \mathbf{T}(z) + \mathbf{P}(\mathbf{x}) \circ \mathbf T^{\ast} (z), $$
(55)

from which the velocity gradient is:

$$ \nabla \mathbf{v}^{\ast} = \mathbb{P}^{\ast} \circ \mathbb{T} + \mathbb{P} \circ \mathbb{T}^{\ast}. $$
(56)

The choice of \(\mathbb {P}\) and \(\mathbb {T}\) in Eq. 56 is discussed in “Separated representation constructor” section.

Developing the first term in Eq. 54 (the other terms follow the same rationale) taking into account Eq. 3 results

$$ \nabla \mathbf{v}^{\ast} : \nabla \mathbf{v} \approx \left(\mathbb{P}^{\ast} \circ \mathbb{T} + \mathbb{P} \circ \mathbb{T}^{\ast} \right) : \left(\sum \limits_{j=1}^{N} \mathbb{P}_{j} \circ \mathbb{T}_{j} \right). $$
(57)

It is easy to note that if matrices \(\mathbb {M}(\mathbf {x})\) and \(\mathbb {N}(\mathbf {x})\) depend on the in-plane coordinates x, and matrices \(\mathbb {U}(z)\) and \(\mathbb {V}(z)\) depend on the out-of-plane coordinate z, we have

$$ \left(\mathbb{M} \circ \mathbb{U} \right) : \left(\mathbb{N} \circ \mathbb{V} \right) = \left(\mathbb{M} \circ \mathbb{N} \right) : \left(\mathbb{U} \circ \mathbb{V} \right). $$
(58)

Using this equality, Eq. 57 can be written as

$$\begin{array}{@{}rcl@{}} \nabla \mathbf{v}^{\ast} : \nabla \mathbf{v} &\approx& \sum \limits_{j=1}^{N} \left\{ \left(\mathbb{P}^{\ast} \circ \mathbb{P}_{j} \right) : \left(\mathbb{T} \circ \mathbb{T}_{j} \right)\right.\\ &&\left.+ \left(\mathbb{P} \circ \mathbb{P}_{j} \right) : \left(\mathbb{T}^{\ast} \circ \mathbb{T}_{j} \right) \right\}, \end{array} $$
(59)

and the other terms involved in Eq. 54 as

$$\begin{array}{@{}rcl@{}} \nabla \mathbf{v}^{\ast} : \left(\nabla \mathbf{v} \right)^{T} &\approx& \sum \limits_{j=1}^{N} \left\{ \left(\mathbb{P}^{\ast} \circ \mathbb{P}_{j}^{T} \right) : \left(\mathbb{T} \circ \mathbb{T}_{j}^{T} \right) \right.\\&&\left.+ \left(\mathbb{P} \circ \mathbb{P}_{j}^{T} \right) : \left(\mathbb{T}^{\ast} \circ \mathbb{T}_{j}^{T} \right) \right\} , \end{array} $$
(60)
$$\begin{array}{@{}rcl@{}} \left(\nabla \mathbf{v} \right)^{\ast T} : \nabla \mathbf{v} &\approx& \sum \limits_{j=1}^{N} \left\{ \left(\mathbb{P}^{\ast T} \circ \mathbb{P}_{j} \right) : \left(\mathbb{T}^{T} \circ \mathbb{T}_{j} \right) \right.\\&&\left.+ \left(\mathbb{P}^{T} \circ \mathbb{P}_{j} \right) : \left(\mathbb{T}^{\ast T} \circ \mathbb{T}_{j} \right) \right\}, \end{array} $$
(61)

and

$$\begin{array}{@{}rcl@{}} \left(\nabla \mathbf{v} \right)^{\ast T} : \left(\nabla \mathbf{v} \right)^{T} &\approx& \sum \limits_{j=1}^{N} \left\{ \left(\mathbb{P}^{\ast T} \circ \mathbb{P}_{j}^{T} \right) : \left(\mathbb{T}^{T} \circ \mathbb{T}_{j}^{T} \right) \right.\\&&\left.+ \left(\mathbb{P}^{T} \circ \mathbb{P}_{j}^{T} \right) : \left(\mathbb{T}^{\ast T} \circ \mathbb{T}_{j}^{T} \right) \right\}. \end{array} $$
(62)

Thus, we finally obtain

$$\begin{array}{@{}rcl@{}} 4\mathbf{D}^{\ast} : \mathbf{D} \!&\approx&\! \sum \limits_{j=1}^{N} \left\{ \left(\mathbb{P}^{\ast} \circ \mathbb{P}_{j} \right) \!:\! \left(\mathbb{T} \circ \mathbb{T}_{j} \right) \,+\, \left(\mathbb{P} \circ \mathbb{P}_{j} \right) \!:\! \left(\mathbb{T}^{\ast} \circ \mathbb{T}_{j} \right) \right\} \\&&+ \sum \limits_{j=1}^{N} \left\{ \left(\mathbb{P}^{\ast} \circ \mathbb{P}_{j}^{T} \right) : \left(\mathbb{T} \circ \mathbb{T}_{j}^{T} \right)\right.\\ &&\hspace*{2.5pc}\left.+ \left(\mathbb{P} \circ \mathbb{P}_{j}^{T} \right) : \left(\mathbb{T}^{\ast} \circ \mathbb{T}_{j}^{T} \right) \right\} \\&&+ \sum \limits_{j=1}^{N} \left\{ \left(\mathbb{P}^{\ast T} \circ \mathbb{P}_{j} \right) : \left(\mathbb{T}^{T} \circ \mathbb{T}_{j} \right)\right.\\ &&\hspace*{2.5pc}\left.+ \left(\mathbb{P}^{T} \circ \mathbb{P}_{j} \right) : \left(\mathbb{T}^{\ast T} \circ \mathbb{T}_{j} \right) \right\} \\&&+ \sum \limits_{j=1}^{N} \left\{ \left(\mathbb{P}^{\ast T} \circ \mathbb{P}_{j}^{T} \right) : \left(\mathbb{T}^{T} \circ \mathbb{T}_{j}^{T} \right)\right.\\ &&\hspace*{2.5pc}\left.+ \left(\mathbb{P}^{T} \circ \mathbb{P}_{j}^{T} \right) : \left(\mathbb{T}^{\ast T} \circ \mathbb{T}_{j}^{T} \right) \right\} \\&=& \sum \limits_{j=1}^{N} \sum \limits_{k=1}^{4} \left\{ \mathbb{A}_{jk}^{\ast}(\mathbf{x}) : \mathbb{B}_{jk}(z) + \mathbb{A}_{jk}(\mathbf{x}) : \mathbb{B}_{jk}^{\ast}(z) \right\},\\ \end{array} $$
(63)

where ∀j, j=1,⋯,N

$$ \mathbb{A}_{jk}^{\ast} = \left\{ \begin{array}{ll} \mathbb{P}^{\ast} \circ \mathbb{P}_{j} ,& \mathrm{if } \ k=1\\ \mathbb{P}^{\ast} \circ \mathbb{P}_{j}^{T}, & \mathrm{if } \ k=2 \\ \mathbb{P}^{\ast T} \circ \mathbb{P}_{j}, & \mathrm{if }\ k=3\\ \mathbb{P}^{\ast T} \circ \mathbb{P}_{j}^{T}, & \mathrm{if }\ k=4 \end{array} \right. , $$
(64)
$$ \mathbb{B}_{jk} = \left\{ \begin{array}{ll} \mathbb{T} \circ \mathbb{T}_{j} ,& \mathrm{if } \ k=1 \\ \mathbb{T} \circ \mathbb{T}_{j}^{T} , & \mathrm{if } \ k=2 \\ \mathbb{T}^{T} \circ \mathbb{T}_{j} , & \mathrm{if } \ k=3 \\ \mathbb{T}^{T} \circ \mathbb{T}_{j}^{T}, & \mathrm{if } \ k=4 \end{array} \right. , $$
(65)
$$ \mathbb{A}_{jk} = \left\{ \begin{array}{ll} \mathbb{P} \circ \mathbb{P}_{j} ,& \mathrm{if } \ k=1 \\ \mathbb{P} \circ \mathbb{P}_{j}^{T}, & \mathrm{if } \ k=2 \\ \mathbb{P}^{T} \circ \mathbb{P}_{j}, & \mathrm{if } \ k=3 \\ \mathbb{P}^{T} \circ \mathbb{P}_{j}^{T}, & \mathrm{if } \ k=4 \end{array} \right. , $$
(66)

and

$$ \mathbb{B}_{jk}^{\ast} = \left\{ \begin{array}{ll} \mathbb{T}^{\ast} \circ \mathbb{T}_{j} ,& \mathrm{if } \ k=1 \\ \mathbb{T}^{\ast} \circ \mathbb{T}_{j}^{T} , & \mathrm{if } \ k=2 \\ \mathbb{T}^{\ast T} \circ \mathbb{T}_{j} , & \mathrm{if } \ k=3 \\ \mathbb{T}^{\ast T} \circ \mathbb{T}_{j}^{T}, & \mathrm{if } \ k=4 \end{array} \right. , $$
(67)

On the other hand, the first term in Eq. 7 can be expressed as:

$$ \text{Tr}(\mathbf{D}^{\ast}) \cdot \text{Tr}(\mathbf{D}) = \text{Tr}(\nabla \mathbf{v}^{\ast}) \cdot \text{Tr}(\nabla \mathbf{v}), $$
(68)

with

$$ \text{Tr}(\nabla \mathbf{v}) \approx \left(\sum \limits_{i=1}^{N} \mathbb{P}_{i} \circ \mathbb{T}_{i} \right) : \mathbf I. $$
(69)

Thus, a generic term in Eq. 68 can be written as

$$ \left(\left(\mathbb{P}^{\ast} \circ \mathbb{T} + \mathbb{P} \circ \mathbb{T}^{\ast} \right) : \mathbf{I} \right) \cdot \left(\left(\mathbb{P}_{j} \circ \mathbb{T}_{j} \right) : \mathbf{I} \right). $$
(70)

Now, by defining \(\mathcal {V}(\mathbb {J})\) the vector form of the diagonal matrix \(\mathbb {J}\), Eq. 70 results

$$\begin{array}{@{}rcl@{}} &&\left(\left(\mathbb{P}^{\ast} \circ \mathbb{T} + \mathbb{P} \circ \mathbb{T}^{\ast} \right) : \mathbf{I} \right) \cdot \left(\left(\mathbb{P}_{j} \circ \mathbb{T}_{j} \right) : \mathbf{I} \right) \\ &=& \left(\mathcal{V}(\mathbb{P}^{\ast} \circ \mathbf{I}) \otimes \mathcal{V}(\mathbb{P}_{j} \circ \mathbf{I}) \right) : (\mathcal{V} (\mathbb{T} \circ \mathbf{I}) \otimes \mathcal{V}(\mathbb{T}_{j} \circ \mathbf{I})) \\ &&+ \left(\mathcal{V}(\mathbb{P} \circ \mathbf{I}) \otimes \mathcal{V}(\mathbb{P}_{j} \circ \mathbf{I}) \right) : (\mathcal{V} (\mathbb{T}^{\ast} \circ \mathbf{I}) \otimes \mathcal{V}(\mathbb{T}_{j} \circ \mathbf{I})),\\ \end{array} $$
(71)

that allows finally casting the first term in the weak form (7) as

$$ \text{Tr}(\mathbf{D}^{\ast}) \cdot \text{Tr}(\mathbf{D}) \approx \sum\limits_{j=1}^{N} \mathbb{F}_{j}^{\ast} (\mathbf{x}) : \mathbb{G}_{j} (z) + \mathbb{F}_{j}(\mathbf{x}) : \mathbb{G}_{j}^{\ast}(z) $$
(72)

with

$$ \mathbb{F}^{\ast}_{j} = \mathcal{V}(\mathbb{P}^{\ast} \circ \mathbf{I}) \otimes \mathcal{V}(\mathbb{P}_{j} \circ \mathbf{I}) , $$
(73)
$$ \mathbb{G}_{j} = \mathcal{V} (\mathbb{T} \circ \mathbf{I}) \otimes \mathcal{V}(\mathbb{T}_{j} \circ \mathbf{I}), $$
(74)
$$ \mathbb{F}_{j} = \mathcal{V}(\mathbb{P} \circ \mathbf{I}) \otimes \mathcal{V}(\mathbb{P}_{j} \circ \mathbf{I}), $$
(75)

and

$$ \mathbb{G}_{j}^{\ast} = \mathcal{V} (\mathbb{T}^{\ast} \circ \mathbf{I}) \otimes \mathcal{V}(\mathbb{T}_{j} \circ \mathbf{I}). $$
(76)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibáñez, R., Abisset-Chavanne, E., Chinesta, F. et al. Simulating squeeze flows in multiaxial laminates: towards fully 3D mixed formulations. Int J Mater Form 10, 653–669 (2017). https://doi.org/10.1007/s12289-016-1309-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-016-1309-4

Keywords

Navigation