Skip to main content

Advertisement

Log in

Pathological examination of breast cancer biomarkers: current status in Japan

  • Special Feature
  • Current situation of pathology practice for breast cancers in Japan
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

This article reviews the current status of pathological evaluation for biomarkers in Japan. The introduced issues are the international trends for estimation of biomarkers considering diagnosis and treatment decision, and pathological issues under discussion, and how Japanese Breast Cancer Society (JBCS) members have addressed issues related to pathology and biomarkers evaluation. As topics of immunohistochemical study, (1) ASCO/CAP guidelines, (2) Ki67 and other markers, (3) quantification and image analysis, (4) application of cytologic samples, (5) pre-analytical process, and (6) Japan Pathology Quality Assurance System are introduced. Various phases of concepts, guidelines, and methodologies are co-existed in today’s clinical practice. It is expected in near future that conventional methods and molecular procedures will be emerged, and Japanese Quality assurance/Quality control (QA/QC) system will work practically. What we have to do in the next generation are to validate novel procedures, to evaluate the relationship between traditional concepts and newly proposed ideas, to establish a well organized QA/QC system, and to standardize pre-analytical process that are the basis of all procedures using pathological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu P, Wu E, Weiss LM. Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod Pathol. 2000;13:962–72.

    Article  CAS  PubMed  Google Scholar 

  2. Satoh F, Umemura S, Itoh H, et al. Fine needle aspiration cytology of glycogen-rich clear cell carcinoma of the breast. A case report. Acta Cytol. 1998;42:413–8.

    Article  CAS  PubMed  Google Scholar 

  3. Luo MH, Huang YH, Ni YB, et al. Expression of mammaglobin and gross cystic disease fluid protein-15 in breast carcinomas. Hum Pathol. 2013;44:1241–50.

    Article  CAS  PubMed  Google Scholar 

  4. Moritani S, Ichihara S, Hasegawa M, et al. Serous papillary adenocarcinoma of the female genital organs and invasive micropapillary carcinoma of the breast. Are WT1, CA125, and GCDFP-15 useful in differential diagnosis? Hum Pathol. 2008;39:666–71.

    Article  CAS  PubMed  Google Scholar 

  5. Miettinen M, McCue PA, Sarlomo-Rikala M, et al. GATA3: a multispecific but potentially useful marker in surgical pathology: a systematic analysis of 2500 epithelial and nonepithelial tumors. Am J Surg Pathol. 2014;38:13–22.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Moritani S, Kushima R, Sugihara H, et al. Availability of CD10 immunohistochemistry as a marker of breast myoepithelial cells on paraffin sections. Mod Pathol. 2002;15:397–405.

    Article  PubMed  Google Scholar 

  7. Dabbs DJ, Schnitt SJ, Geyer FC, et al. Lobular neoplasia of the breast revisited with emphasis on the role of E-cadherin immunohistochemistry. Am J Surg Pathol. 2013;37:e1–11.

    Article  PubMed  Google Scholar 

  8. Kawasaki T, Nakamura S, Sakamoto G, et al. Neuroendocrine ductal carcinoma in situ (NE-DCIS) of the breast–comparative clinicopathological study of 20 NE-DCIS cases and 274 non-NE-DCIS cases. Histopathology. 2008;53:288–98.

    Article  CAS  PubMed  Google Scholar 

  9. Kawasaki T, Mochizuki K, Yamauchi H, et al. Neuroendocrine cells associated with neuroendocrine carcinoma of the breast: nature and significance. J Clin Pathol. 2012;65:699–703.

    Article  PubMed  Google Scholar 

  10. Tajima S, Maeda I, Kanemaki Y, et al. Evaluation of CD56 and CD57 immunostainings for discrimination between endocrine ductal carcinoma in situ and intraductal papilloma. Pathol Int. 2010;60:459–65.

    Article  PubMed  Google Scholar 

  11. Goldhirsch A, Winer EP, Coates AS, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol. 2013;24:2206–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wolff AC, Hammond ME, Hicks DG, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31:3997–4013.

    Article  PubMed  Google Scholar 

  13. Wolff AC, Hammond ME, Schwartz JN, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007;25:118–45.

    Article  CAS  PubMed  Google Scholar 

  14. Hammond ME, Hayes DF, Dowsett M, et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28:2784–95.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hanna WM, Ruschoff J, Bilous M, et al. HER2 in situ hybridization in breast cancer: clinical implications of polysomy 17 and genetic heterogeneity. Mod Pathol. 2014;27:4–18.

    Article  CAS  PubMed  Google Scholar 

  16. de Azambuja E, Cardoso F, De Castro G Jr, et al. Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. Br J Cancer. 2007;96:1504–13.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dowsett M, Nielsen TO, A’Hern R, et al. Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst. 2011;103:1656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Niikura N, Iwamoto T, Masuda S, et al. Immunohistochemical Ki67 labeling index has similar proliferation predictive power to various gene signatures in breast cancer. Cancer Sci. 2012;103:1508–12.

    Article  CAS  PubMed  Google Scholar 

  19. Niikura N, Masuda S, Kumaki N, et al. Prognostic significance of the Ki67 scoring categories in breast cancer subgroups. Clin Breast Cancer. 2014;14:323–9.

  20. Nishimura R, Osako T, Okumura Y, et al. Ki-67 as a prognostic marker according to breast cancer subtype and a predictor of recurrence time in primary breast cancer. Exp Ther Med. 2010;1:747–54.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mikami Y, Ueno T, Yoshimura K, et al. Interobserver concordance of Ki67 labeling index in breast cancer: Japan Breast Cancer Research Group Ki67 ring study. Cancer Sci. 2013;104:1539–43.

    Article  CAS  PubMed  Google Scholar 

  22. Honma N, Horii R, Iwase T, et al. Ki-67 evaluation at the hottest spot predicts clinical outcome of patients with hormone receptor-positive/HER2-negative breast cancer treated with adjuvant tamoxifen monotherapy. Breast Cancer 2013. doi:10.1007/s12282-013-0455-5.

  23. Niikura N, Sakatani T, Arima N, et al. Assessment of the Ki67 labeling index: a Japanese validation ring study. Breast Cancer 2014.

  24. van Diest PJ, Michalides RJ, Jannink L, et al. Cyclin D1 expression in invasive breast cancer. Correlations and prognostic value. Am J Pathol. 1997;150:705–11.

    PubMed  PubMed Central  Google Scholar 

  25. Kim SJ, Nakayama S, Miyoshi Y, et al. Determination of the specific activity of CDK1 and CDK2 as a novel prognostic indicator for early breast cancer. Ann Oncol. 2008;19:68–72.

    Article  CAS  PubMed  Google Scholar 

  26. Kim SJ, Masuda N, Tsukamoto F, et al. The cell cycle profiling: risk score based on CDK1 and 2 predicts early recurrence in node-negative, hormone receptor-positive breast cancer treated with endocrine therapy. Cancer Lett. (in press).

  27. Honma N, Horii R, Iwase T, et al. Clinical importance of estrogen receptor-beta evaluation in breast cancer patients treated with adjuvant tamoxifen therapy. J Clin Oncol. 2008;26:3727–34.

  28. Honma N, Horii R, Iwase T, et al. Clinical importance of androgen receptor in breast cancer patients treated with adjuvant tamoxifen monotherapy. Breast Cancer. 2013;20:323–30.

  29. Ooi A, Inokuchi M, Harada S, et al. Gene amplification of ESR1 in breast cancers–fact or fiction? A fluorescence in situ hybridization and multiplex ligation-dependent probe amplification study. J Pathol. 2012;227:8–16.

    Article  CAS  PubMed  Google Scholar 

  30. Camp RL, Chung GG, Rimm DL. Automated subcellular localization and quantification of protein expression in tissue microarrays. Nat Med. 2002;8:1323–7.

    Article  CAS  PubMed  Google Scholar 

  31. Welsh AW, Moeder CB, Kumar S, et al. Standardization of estrogen receptor measurement in breast cancer suggests false-negative results are a function of threshold intensity rather than percentage of positive cells. J Clin Oncol. 2011;29:2978–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harigopal M, Heymann J, Ghosh S, et al. Estrogen receptor co-activator (AIB1) protein expression by automated quantitative analysis (AQUA) in a breast cancer tissue microarray and association with patient outcome. Breast Cancer Res Treat. 2009;115:77–85.

    Article  CAS  PubMed  Google Scholar 

  33. Camp RL, Dolled-Filhart M, King BL, et al. Quantitative analysis of breast cancer tissue microarrays shows that both high and normal levels of HER2 expression are associated with poor outcome. Cancer Res. 2003;63:1445–8.

    CAS  PubMed  Google Scholar 

  34. Dolled-Filhart M, Camp RL, Kowalski DP, et al. Tissue microarray analysis of signal transducers and activators of transcription 3 (Stat3) and phospho-Stat3 (Tyr705) in node-negative breast cancer shows nuclear localization is associated with a better prognosis. Clin Cancer Res. 2003;9:594–600.

    CAS  PubMed  Google Scholar 

  35. Dolled-Filhart M, McCabe A, Giltnane J, et al. Quantitative in situ analysis of beta-catenin expression in breast cancer shows decreased expression is associated with poor outcome. Cancer Res. 2006;66:5487–94.

    Article  CAS  PubMed  Google Scholar 

  36. Harigopal M, Berger AJ, Camp RL, et al. Automated quantitative analysis of E-cadherin expression in lymph node metastases is predictive of survival in invasive ductal breast cancer. Clin Cancer Res. 2005;11:4083–9.

    Article  CAS  PubMed  Google Scholar 

  37. Pick E, Kluger Y, Giltnane JM, et al. High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res. 2007;67:2932–7.

    Article  CAS  PubMed  Google Scholar 

  38. Pozner-Moulis S, Cregger M, Camp RL, et al. Antibody validation by quantitative analysis of protein expression using expression of Met in breast cancer as a model. Lab Invest. 2007;87:251–60.

    Article  CAS  PubMed  Google Scholar 

  39. Xie W, Mertens JC, Reiss DJ, et al. Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study. Cancer Res. 2002;62:497–505.

    CAS  PubMed  Google Scholar 

  40. Nadler Y, Camp RL, Schwartz C, et al. Expression of Aurora A (but not Aurora B) is predictive of survival in breast cancer. Clin Cancer Res. 2008;14:4455–62.

    Article  CAS  PubMed  Google Scholar 

  41. Yamaguchi R, Tsuchiya S, Koshikawa T, et al. Diagnostic accuracy of fine-needle aspiration cytology of the breast in Japan: report from the Working Group on the Accuracy of Breast Fine-Needle Aspiration Cytology of the Japanese Society of Clinical Cytology. Oncol Rep. 2012;28:1606–12.

    PubMed  Google Scholar 

  42. Yamaguchi R, Tsuchiya S, Koshikawa T, et al. Evaluation of inadequate, indeterminate, false-negative and false-positive cases in cytological examination for breast cancer according to histological type. Diagn Pathol. 2012;7:53.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nishimura R, Aogi K, Yamamoto T, et al. Usefulness of liquid-based cytology in hormone receptor analysis of breast cancer specimens. Virchows Arch. 2011;458:153–8.

    Article  CAS  PubMed  Google Scholar 

  44. Nishimura R, Kagawa A, Tamogami S, et al. Correlation of HER2 gene status assessment by fluorescence in situ hybridization between histological sections and cytological specimens of breast cancer. Breast Cancer 2014.

  45. Sato M, Kojima M, Nagatsuma AK, et al. Optimal fixation for total preanalytic phase evaluation in pathology laboratories. A comprehensive study including immunohistochemistry, DNA, and mRNA assays. Pathol Int. 2014;64:209–16.

    Article  CAS  PubMed  Google Scholar 

  46. Kurosumi M. Immunohistochemical assessment of hormone receptor status using a new scoring system (J-Score) in breast cancer. Breast Cancer. 2007;14:189–93.

    Article  PubMed  Google Scholar 

  47. Umemura S, Kurosumi M, Moriya T, et al. Recommendations for ‘adequate evaluation of hormone receptors’ a report of the task force of the Japanese Breast Cancer Society. Oncol Rep. 2010;24:299–304.

    Article  PubMed  Google Scholar 

  48. Horii R, Akiyama F, Ito Y, et al. Optimal indications of endocrine therapy alone as adjuvant systemic treatment of breast cancer. Br J Cancer. 2007;97:654–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Horii R, Akiyama F, Ito Y, et al. Assessment of hormone receptor status in breast cancer. Pathol Int. 2007;57:784–90.

    Article  CAS  PubMed  Google Scholar 

  50. Yamashita H, Yando Y, Nishio M, et al. Immunohistochemical evaluation of hormone receptor status for predicting response to endocrine therapy in metastatic breast cancer. Breast Cancer. 2006;13:74–83.

    Article  PubMed  Google Scholar 

  51. Osako T, Iwase T, Kimura K, et al. Intraoperative molecular assay for sentinel lymph node metastases in early stage breast cancer: a comparative analysis between one-step nucleic acid amplification whole node assay and routine frozen section histology. Cancer. 2011;117:4365–74.

    Article  CAS  PubMed  Google Scholar 

  52. Ohi Y, Umekita Y, Sagara Y, et al. Whole sentinel lymph node analysis by a molecular assay predicts axillary node status in breast cancer. Br J Cancer. 2012;107:1239–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nielsen TO, Parker JS, Leung S, et al. A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res. 2010;16:5222–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.

    Article  CAS  PubMed  Google Scholar 

  55. van de Vijver MJ, He YD, van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.

    Article  PubMed  Google Scholar 

  56. Sotiriou C, Desmedt C. Gene expression profiling in breast cancer. Ann Oncol. 2006;17(Suppl 10):x259–62.

    Article  PubMed  Google Scholar 

  57. Dowsett M, Sestak I, Lopez-Knowles E, et al. Comparison of PAM50 risk of recurrence score with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol. 2013;31:2783–90.

    Article  PubMed  Google Scholar 

  58. Kraus JA, Dabbs DJ, Beriwal S, et al. Semi-quantitative immunohistochemical assay versus oncotype DX((R)) qRT-PCR assay for estrogen and progesterone receptors: an independent quality assurance study. Mod Pathol. 2012;25:869–76.

    Article  CAS  PubMed  Google Scholar 

  59. Tsuda H. Gene and chromosomal alterations in sporadic breast cancer: correlation with histopathological features and implications for genesis and progression. Breast Cancer. 2009;16:186–201.

    Article  PubMed  Google Scholar 

  60. Weigelt B, Geyer FC, Reis-Filho JS. Histological types of breast cancer: how special are they? Mol Oncol. 2010;4:192–208.

    Article  CAS  PubMed  Google Scholar 

  61. Weigelt B, Geyer FC, Natrajan R, et al. The molecular underpinning of lobular histological growth pattern: a genome-wide transcriptomic analysis of invasive lobular carcinomas and grade- and molecular subtype-matched invasive ductal carcinomas of no special type. J Pathol. 2010;220:45–57.

    Article  CAS  PubMed  Google Scholar 

  62. Weigelt B, Hu Z, He X, et al. Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res. 2005;65:9155–8.

    Article  CAS  PubMed  Google Scholar 

  63. Masuda S. Breast cancer pathology: the impact of molecular taxonomy on morphological taxonomy. Pathol Int. 2012;62:295–302.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinobu Masuda.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masuda, S. Pathological examination of breast cancer biomarkers: current status in Japan. Breast Cancer 23, 546–551 (2016). https://doi.org/10.1007/s12282-014-0566-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-014-0566-7

Keywords

Navigation