Skip to main content

Advertisement

Log in

Gene and chromosomal alterations in sporadic breast cancer: correlation with histopathological features and implications for genesis and progression

  • Special Feature
  • Current issues and perspectives on breast cancer diagnosis
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

A number of gene and chromosome alterations have been identified in sporadic breast carcinomas, and their clinical implications have been investigated. Changes in proto-oncogenes and tumor-suppressor genes, e.g., HER2, p53, and E-cadherin, and various numerical and structural chromosome alterations are strongly correlated with histological type and grade in breast carcinomas. The amount of information on these alterations has been dramatically increased by the introduction of high-throughput molecular cytogenetic approaches. In the near future, breast cancers will be classified into specific groups according to their profile of gene and chromosome alterations, allowing more effective personalized therapies targeting the associated molecular pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cancer Statistics in Japan Editorial Board. Cancer statistics in Japan, Tokyo, 2007. http://ganjoho.jp/public/statistics/backnumber/2008_jp.html.

  2. Fukutomi T, Ushijima T, Inoue R, Akashi-Tanaka S, Nanasawa T, Tsuda H. BRCA1 and BRCA2 germline mutations in Japanese with hereditary breast cancer families. Breast Cancer. 1997;4:256–8.

    Article  PubMed  Google Scholar 

  3. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266:66–71.

    Article  PubMed  CAS  Google Scholar 

  4. Tavtigian SV, Simard J, Rommens J, Couch F, Shattuck-Eidens D, Neuhausen S, et al. The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat Genet. 1996;12:333–7.

    Article  PubMed  CAS  Google Scholar 

  5. Katagiri T, Kasumi F, Yoshimoto M, Nomizu T, Asaishi K, Abe R, et al. High proportion of missense mutations of the BRCA1 and BRCA2 genes in Japanese breast cancer families. J Hum Genet. 1998;43:42–8.

    Article  PubMed  CAS  Google Scholar 

  6. Lakhani SR, Easton DF, Stratton MR. Breast Cancer Linkage Consortium. Pathology of familial breast cancer: differences between breast cancers in carriers of BRCA1 or BRCA2 mutations and sporadic cases. Lancet. 1997;349:1505–10.

    Article  Google Scholar 

  7. Noguchi S, Kasugai T, Miki Y, Fukutomi T, Emi M, Nomizu T. Clinicopathologic analysis of BRCA1- or BRCA2-associated hereditary breast carcinoma in Japanese women. Cancer. 1999;85:2200–5.

    Article  PubMed  CAS  Google Scholar 

  8. Brugarolas J, Jacks T. Double indemnity: p53, BRCA and cancer. p53 mutation partially rescues developmental arrest in Brca1 and Brca2 null mice, suggesting a role for familial breast cancer genes in DNA damage repair. Nat Med. 1997;3:721–2.

    Article  PubMed  CAS  Google Scholar 

  9. Ohta T, Fukuda M. Ubiquitin and breast cancer. Oncogene. 2004;23:2079–88.

    Article  PubMed  CAS  Google Scholar 

  10. Narod SA, Foulkes WD. BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer. 2004;4:665–76.

    Article  PubMed  CAS  Google Scholar 

  11. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portlaits of human breast tumors. Nature. 2000;406:747–52.

    Article  PubMed  CAS  Google Scholar 

  12. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869–74.

    Article  PubMed  CAS  Google Scholar 

  13. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003;100:8418–23.

    Article  PubMed  CAS  Google Scholar 

  14. Desmedt C, Haibe-Kains B, Wirapati P, Buyse M, Larsimont D, Bontempi G, et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res. 2008;14:5158–65.

    Article  PubMed  CAS  Google Scholar 

  15. Fadare O, Tavassoli FA. Clinical and pathologic aspects of basal-like breast cancers. Nat Clin Pract Oncol. 2008;5:149–59.

    Article  PubMed  Google Scholar 

  16. Rakha EA, Reis-Filho JS, Ellis IO. Basal-like breast cancer: a critical review. J Clin Oncol. 2008;26:2568–81.

    Article  PubMed  Google Scholar 

  17. Goldhirsch A, Wood W, Gelber R, Coates A, Thurlimann B, Senn HJ. Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol. 2007;18:1133–44.

    Article  PubMed  CAS  Google Scholar 

  18. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology. Breast Cancer. v.1. 2009, p. 1–121. 2009. www.nccn.org/professionals/physician_gls/PDF/breast.pdf.

  19. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.

    Article  PubMed  CAS  Google Scholar 

  20. van de Vijver M, van de Bersselaar R, Devilee P, Cornelisse C, Peterse J, Nusse R. Amplification of the neu (c-erbB-2) oncogene in human mammary tumors is relatively frequent and is often accompanied by amplification of the linked c-erbA oncogene. Mol Cell Biol. 1987;7:3019–23.

    Google Scholar 

  21. Berger MS, Locher GW, Sauer S, Gulluck WJ, Waterfield MD, Groner B, et al. Correlation of c-erbB-2 gene amplification and protein overexpression in human breast cancer with nodal status and nuclear grading. Cancer Res. 1988;48:1238–43.

    PubMed  CAS  Google Scholar 

  22. Tsuda H, Hirohashi S, Shimosato Y, Hirota T, Tsugane S, Yamamoto H, et al. Correlation between long-term survival in breast cancer patients and amplification of two putative oncogene-coamplification units: hst-1/int-2 and c-erbB-2/ear-1. Cancer Res. 1989;49:3104–8.

    PubMed  CAS  Google Scholar 

  23. Kallioniemi O-P, Kallioniemi A, Kurisu W, Thor A, Chen LC, Smith HS, et al. ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization. Proc Natl Acad Sci USA. 1992;89:5321–5.

    Article  PubMed  CAS  Google Scholar 

  24. Mitchell MS, Press MF. The role of immunohistochemistry and fluorescence in situ hybridization for HER2/neu in assessing the prognosis of breast cancer. Semin Oncol. 1999;26:108–16.

    PubMed  CAS  Google Scholar 

  25. Tsuda H, Hirohashi S, Shimosato Y, Hirota T, Tsugane S, Watanabe S, et al. Correlation between histologic grade of malignancy and copy number of c-erbB-2 gene in breast carcinoma: a retrospective analysis of 176 cases. Cancer. 1990;65:1794–800.

    Article  PubMed  CAS  Google Scholar 

  26. Iwaya K, Tsuda H, Hiraide H, Tamaki K, Tamakuma S, Fukutomi T, et al. Nuclear p53 immunoreaction associated with poor prognosis of breast cancer. Jpn J Cancer Res. 1991;82:835–40.

    PubMed  CAS  Google Scholar 

  27. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991;253:49–53.

    Article  PubMed  CAS  Google Scholar 

  28. Osborne RJ, Merlo GR, Mitsudomi T, Venesio T, Liscia DS, Cappa AP, et al. Mutations in the p53 gene in primary human breast cancers. Cancer Res. 1991;51:6194–8.

    PubMed  CAS  Google Scholar 

  29. Tsuda H, Iwaya K, Fukutomi T, Hirohashi S. p53 mutations and c-erbB-2 amplification in intraductal and invasive breast carcinomas of high histologic grade. Jpn J Cancer Res. 1993;84:394–401.

    PubMed  CAS  Google Scholar 

  30. Bergh J, Norberg T, Sjogren S, Lindgren A, Holmberg L. Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nat Med. 1995;1:1029–34.

    Article  PubMed  CAS  Google Scholar 

  31. Olivier M, Langerod A, Carrieri P, Bergh J, Klaar S, Eyfjord J, et al. The clinical value of somatic TP53 gene mutations in 1, 794 patients with breast cancer. Clin Cancer Res. 2006;12:1157–67.

    Article  PubMed  CAS  Google Scholar 

  32. Ozcelik H, Pinnaduwage D, Bull SB, Andrulis IL. Type of TP53 mutation and ERBB2 amplification affects survival in node-negative breast cancer. Breast Cancer Res Treat. 2007;105:255–65.

    Article  PubMed  CAS  Google Scholar 

  33. Escot C, Theillet C, Lidereau R, Spyratos F, Champeme ME, Gest J, et al. Genetic alteration of the c-myc protooncogene (MYC) in human primary breast carcinomas. Proc Natl Acad Sci USA. 1986;83:4834–8.

    Article  PubMed  CAS  Google Scholar 

  34. Ali IU, Lidereau R, Theillet C, Callahan R. Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia. Science. 1987;238:185–8.

    Article  PubMed  CAS  Google Scholar 

  35. Chen L-C, Neubauer A, Kurisu W, Waldman FM, Ljung B-M, Goodson WIII, et al. Loss of heterozygosity on the short arm of chromosome 17 is associated with high proliferative capacity and DNA aneuploidy in primary human breast cancer. Proc Natl Acad Sci USA. 1991;88:3847–51.

    Article  PubMed  CAS  Google Scholar 

  36. Devilee P, van Vliet M, Bardoel A, KIevits T, Kuipers-Dijkshoorn N, Pearson PL, et al. Frequent somatic imbalance of marker alleles for chromosome 1 in human primary breast carcinoma. Cancer Res. 1991;51:1020–5.

    PubMed  CAS  Google Scholar 

  37. Bieche I, Champeme MH, Matifas F, Hacene K, Callahan R, Lidereau R. Loss of heterozygosity on chromosome 7q and aggressive primary breast cancer. Lancet. 1992;339:139–43.

    Article  PubMed  CAS  Google Scholar 

  38. Sato T, Tanigami A, Yamakawa K, Akiyama F, Kasumi F, Sakamoto G, et al. Allelotype of breast cancer: cumulative allele losses promote tumor progression in primary breast cancer. Cancer Res. 1990;50:7184–9.

    PubMed  CAS  Google Scholar 

  39. Tsuda H, Callen DF, Fukutomi T, Nakamura Y, Hirohashi S. Allele loss on chromosome 16q24.2-qter occurs frequently in breast cancers irrespectively of differences in phenotype and extent of spread. Cancer Res. 1994;54:513–7.

    PubMed  CAS  Google Scholar 

  40. Cleton-Jansen A-M, Moerland EW, Kuipers-Dijkshoorn N, Cullen DF, Sutherland GR, Hansen B, et al. At least two different regions are involved in allelic imbalance on chromosome arm 16q in breast cancer. Genes Chromosomes Cancer. 1994;9:101–7.

    Article  PubMed  CAS  Google Scholar 

  41. Matsumura K, Kallioniemi A, Kallioniemi O, Chen L, Smith HC, Pinkel D, et al. Deletion of chromosome 17p loci in breast cancer cells detected by fluorescence in situ hybridization. Cancer Res. 1992;52:3474–7.

    PubMed  CAS  Google Scholar 

  42. Ichikawa D, Hashimoto N, Hoshima M, Yamaguchi T, Sawai K, Nakamura Y, et al. Analysis of numerical alterations in specific chromosomes by fluorescence in situ hybridization (FISH) as a diagnostic tool in breast cancer. Cancer. 1996;77:2064–9.

    Article  PubMed  CAS  Google Scholar 

  43. Dutrillaux B, Gerbault-Seureau M, Remvikos Y, Zafrani B, Prieur M. Breast cancer genetic evolution. I. Data from cytogenetics and DNA content. Breast Cancer Res Treat. 1991;19:245–55.

    Article  PubMed  CAS  Google Scholar 

  44. Kokalj-Vokac N, Alemeida A, Gerbault-Seureau M, Malfoy B, Dutrillaux B. Two-color FISH characterization of i(1q), and der(1;16) in human breast cancer cells. Genes Chromosomes Cancer. 1993;7:8–14.

    Article  PubMed  CAS  Google Scholar 

  45. Tsuarouha H, Pandis N, Bardi G, Teixeira MR, Andersen JA, Heim S. Karyotypic evolution in breast carcinomas with i(1)(q10) and der(1;16)(q10;p10) as the primary chromosome abnormality. Cytogenet Cell Genet. 1999;113:156–61.

    Article  Google Scholar 

  46. Kanai Y, Oda T, Tsuda H, Ochiai A, Hirohashi S. Point mutation of the E-cadherin gene in invasive lobular carcinoma of the breast. Jpn J Cancer Res. 1994;85:1035–9.

    PubMed  CAS  Google Scholar 

  47. Berx G, Cleton-Jansen A-M, Nollet F, de Leeuw WJF, van de Vijver MJ, Cornelisse C, et al. E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. EMBO J. 1995;14:6107–15.

    PubMed  CAS  Google Scholar 

  48. Berx G, Cleton-Jansen A-M, Strumane K, de Leeuw WJF, Nollet F, van Roy F, et al. E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. Oncogene. 1996;13:1919–25.

    PubMed  CAS  Google Scholar 

  49. Droufakou S, Deshmane V, Roylance R, Hanby A, Tomlinson I, Hart IR. Multiple ways of silencing E-cadherin gene expression in lobular carcinoma of the breast. Int J Cancer. 2001;92:404–8.

    Article  PubMed  CAS  Google Scholar 

  50. Sarrio D, Moreno-Bueno G, Hardisson D, Sanchez-Estevez C, Guo M, Herman JG, et al. Epigenetic and genetic alterations of APC and CDH1 genes in lobular breast cancer: relationships with abnormal E-cadherin and catenin expression and microsatellite instability. Int J Cancer. 2003;106:208–15.

    Article  PubMed  CAS  Google Scholar 

  51. Catteau A, Harris WH, Xu CF, Solomon E. Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer: correlation with disease characteristics. Oncogene. 1999;18:1957–65.

    Article  PubMed  CAS  Google Scholar 

  52. Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000;92:564–9.

    Article  PubMed  CAS  Google Scholar 

  53. Miyamoto K, Fukutomi T, Asada K, Wakazono K, Tsuda H, Asahara T, et al. Promoter hypermethylation and post-transcriptional mechanisms responsible for reduced BRCA1 immunoreactivity in sporadic human breast cancers. Jpn J Clin Oncol. 2002;32:79–84.

    Article  PubMed  Google Scholar 

  54. Staff S, Isola J, Tanner M. Haplo-insufficiency of BRCA1 in sporadic breast cancer. Cancer Res. 2003;63:4978–83.

    PubMed  CAS  Google Scholar 

  55. Wei M, Grushko TA, Dignam J, Hagos F, Nanda R, Sveen L, et al. BRCA1 promoter methylation in sporadic breast cancer is associated with reduced BRCA1 copy number and chromosome 17 aneusomy. Cancer Res. 2005;65:10692–9.

    Article  PubMed  CAS  Google Scholar 

  56. Fukushige S, Matsubara K, Yoshida M, Sasaki M, Suzuki T, Semba K, et al. Localization of a novel v-erbB-related gene, c-erbB-2, on human chromosome 17 and its amplification is a gastric cancer cell line. Mol Cell Biol. 1986;6:955–8.

    PubMed  CAS  Google Scholar 

  57. Kallioniemi A, Kallioniemi OP, Piper J, Tanner M, Stokke T, Chen L, et al. Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci USA. 1994;91:2156–60.

    Article  PubMed  CAS  Google Scholar 

  58. Inazawa J, Ichikawa D, Date Y. New technology in cytolopathology. Analysis of chromosomal abnormalities by fluorescence in situ hybridization (FISH) and cancer cytopathology for cytopathological specimens of breast cancer. Byouri to Rinsho. 1996;14:1240–6. (in Japanese).

    CAS  Google Scholar 

  59. Courjal F, Theillet C. Comparative genomic hybridization analysis of breast tumors with predetermined profiles of DNA amplification. Cancer Res. 1997;57:4368–77.

    PubMed  CAS  Google Scholar 

  60. Tsuda H, Takarabe T, Susumu N, Inazawa J, Okada S, Hirohashi S. Detection of numerical and structural alterations and fusion of chromosomes 16 and 1 in low-grade papillary breast carcinoma by fluorescence in situ hybridization. Am J Pathol. 1997;151:1027–34.

    PubMed  CAS  Google Scholar 

  61. Tirkkonen M, Tanner M, Karhu R, Kallioniemi A, Isola J, Kallioniemi OP. Molecular cytogenetics of primary breast cancer by CGH. Genes Chromosomes Cancer. 1998;21:177–84.

    Article  PubMed  CAS  Google Scholar 

  62. Tsuda H, Takarabe T, Hirohashi S. Correlation of the numerical and structural status of chromosome 16 with the histological type and grade of non-invasive and invasive breast carcinomas. Int J Cancer. 1999;84:381–7.

    Article  PubMed  CAS  Google Scholar 

  63. Nailor TL, Greshock J, Wang Y, Colligon T, Clemmer V, Zaks TZ, et al. High resolution genomic analysis of sporadic breast cancer using array-based comparative genomic hybridization. Breast Cancer Res. 2005;7:R1186–98.

    Article  CAS  Google Scholar 

  64. Roylance R, Gorman P, Papior T, Wan YL, Ives M, Watson JE, et al. A comprehensive study of chromosome 16q in invasive ductal and lobular breast carcinoma using array CGH. Oncogene. 2006;25:6544–53.

    Article  PubMed  CAS  Google Scholar 

  65. Climent J, Garcia JL, Mao JH, Arsuaga J, Perez-Losada J. Characterization of breast cancer by array comparative genomic hybridization. Biochem Cell Biol. 2007;85:497–508.

    Article  PubMed  CAS  Google Scholar 

  66. Tsuda H, Takarabe T, Fukutomi T, Hirohashi S. der(16)t(1;16)/der(1;16) in breast cancer detected by fluorescence in situ hybridization is an indicator of better patient prognosis. Genes Chromosomes Cancer. 1999;24:72–7.

    Article  PubMed  CAS  Google Scholar 

  67. Yamamoto T, Ikawa S, Akiyama T, Semba K, Nomura N, Miyajima N, et al. Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor. Nature. 1986;319:230–4.

    Article  PubMed  CAS  Google Scholar 

  68. Jin Q, Esteva FJ. Cross-talk between the ErbB/HER family and the type I insulin-like growth factor receptor signaling pathway in breast cancer. J Mammary Gland Biol Neoplasia. 2008;13:485–98.

    Article  PubMed  Google Scholar 

  69. Tsuda H. HER-2 (c-erbB-2) test update: present status and problems. Breast Cancer. 2006;13:236–48.

    Article  PubMed  Google Scholar 

  70. Paik S, Bryant J, Tan-Chiu E, Yothers G, Park C, Wickerham DL, et al. HER2 and choice of adjuvant chemotherapy for invasive breast cancer: national surgical adjuvant breast and bowel project protocol B-15. J Natl Cancer Inst. 2000;92:1991–8.

    Article  PubMed  CAS  Google Scholar 

  71. Toi M, Nakamura S, Kuroi K, Iwata H, Ohno S, Masuda N, et al. Phase II study of preoperative sequential FEC and docetaxel predicts of pathological response and disease free survival. Breast Cancer Res Treat. 2008;110:531–9.

    Article  PubMed  CAS  Google Scholar 

  72. van de Vijver MJ, Peterse JL, Mooi WJ, Wisman P, Lomans J, Dalesio O, et al. Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med. 1988;319:1239–45.

    PubMed  Google Scholar 

  73. Tsuda H, Fukutomi T, Hirohashi S. Pattern of gene alterations in intraductal breast neoplasms associated with histological type and grade. Clin Cancer Res. 1995;1:261–7.

    PubMed  CAS  Google Scholar 

  74. Tsuda H, Hirohashi S. Multiple developmental pathways to highly aggressive breast cancers disclosed by comparison of histologic grades and c-erbB-2 expression patterns in both the intraductal and invasive portions. Pathol Int. 1998;48:518–25.

    Article  PubMed  CAS  Google Scholar 

  75. Knudson AG Jr, Hethcote HW, Brown BW. Mutation and childhood cancer: a probabilistic model for the incidence of retinoblastoma. Proc Natl Acad Sci USA. 1975;72:5116–20.

    Article  PubMed  Google Scholar 

  76. Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature. 1990;348:747–9.

    Article  PubMed  CAS  Google Scholar 

  77. Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–8. erratum in science. 1993;259:878.

    Article  PubMed  CAS  Google Scholar 

  78. Donehower LA, Bradley A. The tumor suppressor p53. Biochim Biophys Acta. 1993;1155:181–205.

    PubMed  CAS  Google Scholar 

  79. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–31.

    Article  PubMed  CAS  Google Scholar 

  80. Oren M, Gottlieb TM, Oren M. p53 in growth control and neoplasia. Biochim Biophys Acta. 1996;1287:77–102.

    PubMed  Google Scholar 

  81. Toledo F, Wahl GM. Regulating the p53 pathway: in vitro and in vivo veritas. Nat Rev Cancer. 2006;6:909–23.

    Article  PubMed  CAS  Google Scholar 

  82. Tsuda H, Hirohashi S. Association among p53 gene mutation, nuclear accumulation of the p53 protein and aggressive phenotypes in breast cancer. Int J Cancer. 1994;57:498–503.

    Article  PubMed  CAS  Google Scholar 

  83. Vincent-Salomon A, Gruel N, Lucchesi C, MacGrogan G, Dendale R, Sigal-Zafrani B, et al. Identification of typical medullary breast carcinoma as a genomic sub-group of basal-like carcinomas, a heterogeneous new molecular entity. Breast Cancer Res. 2007;9:R24.

    Article  PubMed  CAS  Google Scholar 

  84. Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol. 1998;153:333–9.

    PubMed  CAS  Google Scholar 

  85. Stange DE, Radlwimmer B, Schubert F, Traub F, Pich A, Toedt G, et al. High-resolution genomic profiling reveals association of chromosomal aberrations on 1q and 16p with histologic and genetic subgroups of invasive breast cancer. Clin Cancer Res. 2006;12:345–52.

    Article  PubMed  CAS  Google Scholar 

  86. Cleton-Jansen AM, Buerger H, Haar N, Philippo K, van de Vijver MJ, Boecker W, et al. Different mechanisms of chromosome 16 loss of heterozygosity in well- versus poorly differentiated ductal breast cancer. Genes Chromosomes Cancer. 2004;41:109–16.

    Article  PubMed  CAS  Google Scholar 

  87. Tsuda H, Uei Y, Fukutomi T, Hirohashi S. Different incidence of loss of heterozygosity on chromosome 16q between intraductal papilloma and intracystic papillary carcinoma of the breast. Jpn J Cancer Res. 1994;85:992–6.

    PubMed  CAS  Google Scholar 

  88. Lakhani SR, Collins N, Stratton MR, Sloane JP. Atypical ductal hyperplasia of the breast: clonal proliferation with loss of heterozygosity on chromosomes 16q and 17p. J Clin Pathol. 1995;48:611–5.

    Article  PubMed  CAS  Google Scholar 

  89. Tsuda H, Takarabe T, Akashi-Tanaka S, Fukutomi T, Hirohashi S. Pattern of loss of heterozygosity on chromosome 16q differs between an atypical proliferative lesion and a ductal carcinoma which occurred metachronously at the same area of the breast. Mod Pathol. 2001;14:382–8.

    Article  PubMed  CAS  Google Scholar 

  90. Tsuda H, Takarabe T, Fukutomi T, Hirohashi S. Preferential occurrence of breast carcinomas with loss of 16q and der(16)t(1;16)/der(1;16) in middle-aged patients with hyperproliferative changes in mammary glands. Jpn J Cancer Res. 2000;91:692–9.

    PubMed  CAS  Google Scholar 

  91. Tsuda H, Sakamaki C, Tsugane S, Fukutomi T, Hirohashi S. A prospective study on the significance of gene and chromosome alterations as prognostic indicators of breast cancer patients with lymph node metastases. Breast Cancer Res Treat. 1998;48:21–32.

    Article  PubMed  CAS  Google Scholar 

  92. Emi M, Yoshimoto M, Sato T, Matsumoto S, Utada Y, Ito I. et al. Allelic loss at 1p34, 13q12, 17p13.3, and 17q21.1 correlates with poor postoperative prognosis in breast cancer. Genes Chromosomes Cancer. 1999;26:134–41.

    Article  PubMed  CAS  Google Scholar 

  93. Utada Y, Emi M, Yoshimoto M, Kasumi F, Akiyama F, Sakamoto G, et al. Allelic loss at 1p34–36 predicts poor prognosis in node-negative breast cancer. Clin Cancer Res. 2000;6:3193–8.

    PubMed  CAS  Google Scholar 

  94. Melchor L, Benitez J. An integrative hypothesis about the origin oand development of sporadic and familial breast cancer subtypes. Carcinogenesis. 2008;29:1475–82.

    Article  PubMed  CAS  Google Scholar 

  95. Adelaide J, Finetti P, Rekhoushe I, Repellini L, Geneix J, Sircoulomb F, et al. Integrated profiling of basal and luminal breast cancers. Cancer Res. 2007;67:11565–75.

    Article  PubMed  CAS  Google Scholar 

  96. The Japanese Breast Cancer Society. General rules for clinical and pathological recording of breast cancer, the 16th edn. Kanehara Shuppan: Tokyo; 2008 (in Japanese).

  97. World Health Organization. Tumours of the breast. In: Tavassoli FA, Devilee P, editors. Pathology and genetics of tumours of the breast and female genital organs. Lyon: IARC Press; 2003. p. 9–112.

    Google Scholar 

  98. Rosen PP. The pathology of invasive breast carcinoma. In: Harris JR, Hellman S, Henderson IC, Kinne DW, editors. Breast diseases. 2nd edn. Philadelphia: J. B. Lippincott; 1991. p. 245–96.

    Google Scholar 

  99. Akashi-Tanaka S, Fukutomi T, Nanasawa T, Matsuo K, Hasegawa T, Tsuda H. Treatment of noninvasive carcinoma: fifteen-year results at the National Cancer Center Hospital in Tokyo. Breast Cancer. 2000;7:341–4.

    Article  PubMed  CAS  Google Scholar 

  100. Rosen PP. Intraductal carcinoma. In: Rosen PP, editor. Rosen’s breast pathology. 2nd edn. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 253–323.

    Google Scholar 

  101. Buerger H, Otterbach F, Simon R, Poremba C, Diallo R, Decker T, et al. Comparative genomic hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. J Pathol. 1999;187:396–402.

    Article  PubMed  CAS  Google Scholar 

  102. Vincent-Salomon A, Lucchesi C, Gruel N, Raynal V, Pierron G, et al. Integrated genomic and transcriptomic analysis of ductal carcinoma in situ of the breast. Clin Cancer Res. 2008;14:1956–65.

    Article  PubMed  CAS  Google Scholar 

  103. Lakhani SR, Collins N, Sloane JP, Stratton MR. Loss of heterozygosity in lobular carcinoma in situ of the breast. J Clin Pathol Mol Pathol. 1995;48:M74–8.

    Article  Google Scholar 

  104. Mohsin SK, O’Connell PO, Alled DC, Libby AL. Biomarker profile and genetic abnormalities in lobular carcinoma in situ. Breast Cancer Res Treat. 2005;90:249–56.

    Article  PubMed  Google Scholar 

  105. Volante M, Sapino A, Croce S, Bussolati G. Heterogeneous versus homogeneous genetic nature of multiple foci of in situ carcinoma of the breast. Hum Pathol. 2003;34:1163–9.

    Article  PubMed  CAS  Google Scholar 

  106. Page DL, Sakamoto G. Infiltrating carcinoma: major histologicaltypes. In: Page DL, Anderson TJ, editors. Diagnostic histopathology of the breast. Edinburgh: Churchill Livingstone; 1987. p. 193–205.

    Google Scholar 

  107. Bloom HJG, Richardson WW. Histological grading and prognosis in breast cancer. Br J Cancer. 1957;11:359–77.

    PubMed  CAS  Google Scholar 

  108. Elston CW, Ellis IO. Pathologic prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19:403–10.

    Article  PubMed  CAS  Google Scholar 

  109. Le Doussal V, Tubiana-Hulin M, Friedman S, Hacene K, Spyratos F, Brunet M. Prognostic value of histologic grade nuclear components of Scarff-Bloom-Richardson (SBR). An improved score modification based on a multivariate analysis of 1262 invasive ductal breast carcinomas. Cancer. 1989;64:1914–21.

    Article  PubMed  CAS  Google Scholar 

  110. Tsuda H. Individualization of breast cancer based on histopathological features and molecular alterations. Breast Cancer. 2008;15:121–32.

    Article  PubMed  Google Scholar 

  111. Yoshimoto M, Sakamoto G, Ohashi Y. Time dependency of the influence of prognostic factors on relapse in breast cancer. Cancer. 1993;72:2993–3001.

    Article  PubMed  CAS  Google Scholar 

  112. Nielsen TO, Hsu FD, Jense K, Cheang M, Karaca G, Hu Z, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004;10:5367–74.

    Article  PubMed  CAS  Google Scholar 

  113. Tsuda H, Morita D, Kimura M, Shinto E, Ohtsuka Y, Matsubara O, et al. Correlation of KIT and EGFR overexpression with invasive ductal carcinoma of solid-tubular subtype, nuclear grade 3, and mesenchymal or myoepithelial differentiation in breast cancer. Cancer Sci. 2005;96:48–53.

    PubMed  CAS  Google Scholar 

  114. Rakha EA, Putti TC, Abd El-Rehim DM, Paish C, Green AR, Powe DG, et al. Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation. J Pathol. 2006;208:495–506.

    Article  PubMed  CAS  Google Scholar 

  115. Abd El-Rehim DM, Pinder SE, Paish CE, Bell J, Blamey RW, Robertson JF, et al. Expression of luminal and basal cytokeratins in human breast carcinoma. J Pathol. 2004;203:661–71.

    Article  PubMed  Google Scholar 

  116. Reis-Filho JS, Tutt AN. Triple negative tumours: a critical review. Histopathology. 2008;52:108–18.

    Article  PubMed  CAS  Google Scholar 

  117. Wetzels RH, Kuijpers HJ, Lane EB, Leigh IM, Troyanovsky SM, Holland R, et al. Basal cell-specific and hyperproliferation-related keratins in human breast cancer. Am J Pathol. 1991;138:751–63.

    PubMed  CAS  Google Scholar 

  118. Tsuda H, Takarabe T, Hasegawa T, Murata T, Hirohashi S. Myoepithelial features in high-grade invasive ductal carcinomas with large central acellular zones. Hum Pathol. 1999;30:1134–9.

    Article  PubMed  CAS  Google Scholar 

  119. Tsuda H, Takarabe T, Hasegawa F, Fukutomi T, Hirohashi S. Large central acellular zones indicating myoepithelial tumor differentiation in high-grade invasive ductal carcinomas as markers of predisposition to lung and brain metastases. Am J Surg Pathol. 2000;24:197–202.

    Article  PubMed  CAS  Google Scholar 

  120. Allred DC, Clark GM, Tandon AK, Molina R, Tormey DC, Osborne CK, et al. HER-2/neu in node-negative breast cancer: prognostic significance of overexpression influenced by the presence of in situ carcinoma. J Clin Oncol. 1992;10:599–605.

    PubMed  CAS  Google Scholar 

  121. Anderson JM, Ariga R, Govil H, Bloom KJ, Francescatti D, Reddy VB, et al. Assessment of Her-2/Neu status by immunohistochemistry and fluorescence in situ hybridization in mammary Paget disease and underlying carcinoma. Appl Immunohistochem Mol Morphol. 2003;11:120–4.

    PubMed  CAS  Google Scholar 

  122. Turner NC, Reis-Filho JS. Basal-like breast cancer and the BRCA1 phenotype. Oncogene. 2006;25:5846–53.

    Article  PubMed  CAS  Google Scholar 

  123. Jacquemier J, Padovani L, Rabayrol L, Lakhani SR, Penault-Llorca F, Denoux Y, et al. Typical medullary breast carcinomas have a basal/myoepithelial phenotype. J Pathol. 2005;207:260–8.

    Article  PubMed  CAS  Google Scholar 

  124. Azoulay S, Laé M, Fréneaux P, Merle S, Al Ghuzlan A, Chnecker C, et al. KIT is highly expressed in adenoid cystic carcinoma of the breast, a basal-like carcinoma associated with a favorable outcome. Mod Pathol. 2005;18:1623–31.

    PubMed  CAS  Google Scholar 

  125. Reis-Filho JS, Milanezi F, Steele D, Savage K, Simpson PT, Nesland JM, et al. Metaplastic breast carcinomas are basal-like tumours. Histopathology. 2006;49:10–21.

    Article  PubMed  CAS  Google Scholar 

  126. O’Malley FP, Bane A. An update on apocrine lesions of the breast. Histopathology. 2008;52:3–10.

    PubMed  Google Scholar 

  127. Hanby AM, Hughes TA. In situ and invasive lobular neoplasia of the breast. Histopathology. 2008;52:58–66.

    PubMed  CAS  Google Scholar 

  128. Tavassoli FA. Infiltrating carcinoma: common and familiar special types. In: Tavassoli FA, editor. Pathology of the breast. 2nd ed. McGraw-Hill: New York; 1999. p. 401–80.

    Google Scholar 

  129. Flagiello D, Gerbault-Seureau M, Sastre-Garau X, Padoy E, Vielh P, Dutrillaux B. Highly recurrent der(1;16)(q10;p10) and other 16q arm alterations in lobular breast cancer. Genes Chromosomes Cancer. 1998;23:300–6.

    Article  PubMed  CAS  Google Scholar 

  130. Wheeler DT, Tai LH, Bratthauer GL, Waldner DL, Tavassoli FA. Tubulolobular carcinoma of the breast: an analysis of 27 cases of a tumor with a hybrid morphology and immunoprofile. Am J Surg Pathol. 2004;8:1587–93.

    Google Scholar 

  131. Kuroda H, Tamaru J, Takeuchi I, Ohnisi K, Sakamoto G, Adachi A, et al. Expression of E-cadherin, alpha-catenin, and beta-catenin in tubulolobular carcinoma of the breast. Virchows Arch. 2006;448:500–5.

    Article  PubMed  CAS  Google Scholar 

  132. Esposito NN, Chivukula M, Dabbs DJ. The ductal phenotypic expression of the E-cadherin/catenin complex in tubulolobular carcinoma of the breast: an immunohistochemical and clinicopathologic study. Mod Pathol. 2007;20:130–8.

    Article  PubMed  CAS  Google Scholar 

  133. Ridolfi RL, Rosen PP, Port A, Kinne D, Miké V. Medullary carcinoma of the breast: a clinicopathologic study with 10 year follow-up. Cancer. 1977;40:1365–85.

    Article  PubMed  CAS  Google Scholar 

  134. Lakhani SR, Jacquemier J, Sloane JP, Gusterson BA, Anderson TJ, van de Vijver MJ, et al. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J Natl Cancer Inst. 1998;90:1138–45.

    Article  PubMed  CAS  Google Scholar 

  135. Miyoshi Y, Murase K, Oh K. Basal-like subtype and BRCA1 dysfunction in breast cancers. Int J Clin Oncol. 2008;13:395–400.

    Article  PubMed  CAS  Google Scholar 

  136. Turner NC, Reis-Filho JS, Russell AM, Springall RJ, Ryder K, Steele D, et al. BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene. 2007;26:2126–32.

    Article  PubMed  CAS  Google Scholar 

  137. Magdinier F, Ribieras S, Lenoir GM, Frappart L, Dante R. Down-regulation of BRCA1 in human sporadic breast cancer; analysis of DNA methylation patterns of the putative promoter region. Oncogene. 1998;17:3169–76.

    Article  PubMed  CAS  Google Scholar 

  138. Weigelt B, Horlings HM, Kreike B, Hayes MM, Hauptmann M, Wessels LF, et al. Refinement of breast cancer classification by molecular characterization of histological special types. J Pathol. 2008;216:141–50.

    Article  PubMed  CAS  Google Scholar 

  139. Page DL, Ellis IO, Elston CW. Histologic grading of breast cancer. Let’s do it. Am J Clin Pathol. 1995;103:123–4.

    PubMed  CAS  Google Scholar 

  140. Koyama H, Asaishi K, Yoshimoto M, Enomoto K, Yamamoto H, Uchida M, et al. Recurrence of node-negative breast cancer. Nyugan no Rinsho. 1989;4:69–75. (in Japanese).

    Google Scholar 

  141. Watanabe T, Sano M, Takashima S, Kitaya T, Tokuda Y, Yoshimoto M, et al. Oral uracil-tegafur (UFT) compared with classical cyclophosphamide, methotrexate, 5-fluorouracil (CMF) as postoperative chemotherapy in patients with node-negative, high-risk breast cancer: Results from national surgical adjuvant study for breast cancer (N-SAS-BC) 01 trial. J Clin Oncol. 2009;27:1368–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant-in-aid for cancer research from the Ministry of Health, Labor, and Welfare, Japan, and a research grant from the Princess Takamatsu Cancer Research Fund. The authors indicate no conflict of interest in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Tsuda.

About this article

Cite this article

Tsuda, H. Gene and chromosomal alterations in sporadic breast cancer: correlation with histopathological features and implications for genesis and progression. Breast Cancer 16, 186–201 (2009). https://doi.org/10.1007/s12282-009-0124-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-009-0124-x

Keywords

Navigation