Skip to main content
Log in

Spatial distribution of microbial communities associated with dune landform in the Gurbantunggut Desert, China

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The microbial community compositions and potential ammonia oxidation in the topsoil at different positions of sand dune (stoss slope, crest, lee slope, and interdune) from the Gurbantunggut Desert, the largest semi-fixed desert in China, were investigated using several molecular methods. Actinobacteria and Proteobacteria (especially Alphaproteobacteria) were commonly the dominant taxa across all soil samples. Bacterial communities were similar in soils collected from the stoss slopes and interdunes (HC-BSCs, biological soil crusts with a high abundance of cyanobacteria), containing more abundant cyanobacterial populations (16.9–24.5%) than those (0.2–0.7% of Cyanobacteria) in the crests and lee slopes (LC-BSCs, biological soil crusts with a low abundance of cyanobacteria). The Cyanobacteria were mainly composed of Microcoleus spp., and quantitative PCR analysis revealed that 16S rRNA gene copy numbers of Cyanobacteria (especially genus Microcoleus) were at least two orders of magnitude higher in HC-BSCs than in LC-BSCs. Heterotrophic Geodermatophilus spp. frequently occurred in HC-BSCs (2.5–8.0%), whereas genera Arthrobacter, Bacillus, and Segetibacter were significantly abundant in LC-BSC communities. By comparison, the desert archaeal communities were less complex, and were dominated by Nitrososphaera spp. The amoA gene abundance of ammonia-oxidizing archaea (AOA) was higher than that of ammonia-oxidizing bacteria (AOB) in all soil samples, particularly in the interdunal soils (106–108 archaeal amoA gene copies per gram dry soil), indicating that AOA possibly dominate the ammonia oxidation at the interdunes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abed R.M.M., Al Kharusi S., Schramm A., and Robinson M.D. 2010. Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman. FEMS Microbiol. Ecol. 72, 418–428.

    Article  CAS  PubMed  Google Scholar 

  • Andrew D.R., Fitak R.R., Munguia-Vega A., Racolta A., Martinson V.G., and Dontsova K. 2012. Abiotic Factors Shape Microbial Diversity in Sonoran Desert Soils. Appl. Environ. Microbiol. 78, 7527–7537.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Belnap J. 2002. Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol. Fer. Soils 35, 128–135.

    Article  CAS  Google Scholar 

  • Belnap J. 2003. The world at your feet: desert biological soil crusts. Front. Ecol. Environ. 1, 181–189.

    Article  Google Scholar 

  • Belnap J. and Eldridge D. 2003. Disturbance and recovery of biological soil crusts, pp. 363–383. Biological soil crusts: structure, function, and management, Springer.

    Google Scholar 

  • Belnap J. and Harper K. 1995. Influence of cryptobiotic soil crusts on elemental content of tissue of two desert seed plants. Arid Land Res. Manag. 9, 107–115.

    CAS  Google Scholar 

  • Benitez-Paez A., Alvarez M., Belda-Ferre P., Rubido S., Mira A., and Tomas I. 2013. Detection of transient bacteraemia following dental extractions by 16S rDNA pyrosequencing: a pilot study. PLoS ONE 8, e577–2.

    Article  Google Scholar 

  • Berg N. and Steinberger Y. 2008. Role of perennial plants in determining the activity of the microbial community in the Negev Desert ecosystem. Soil Biol. Biochem. 40, 2686–2695.

    Article  CAS  Google Scholar 

  • Bowker M.A., Belnap J., Davidson D.W., and Harland G. 2006. Correlates of biological soil crust abundance across a continuum of spatial scales: support for a hierarchical conceptual model. J. Appl. Ecol. 43, 152–163.

    Article  Google Scholar 

  • Brankatschk R., Fischer T., Veste M., and Zeyer J. 2013. Succession of N cycling processes in biological soil crusts on a Central European inland dune. FEMS Microbiol. Ecol. 83, 149–160.

    Article  CAS  PubMed  Google Scholar 

  • Caporaso J.G., Bittinger K., Bushman F.D., DeSantis T.Z., Andersen G.L., and Knight R. 2010a. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Pena A.G., Goodrich J.K., Gordon J.I., and et al. 2010b. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen L.Z., Li D.H., Song L.R., Hu C.X., Wang G.H., and Liu Y.D. 2006. Effects of salt stress on carbohydrate metabolism in desert soil alga Microcoleus vaginatus Gom. J. Integr. Plant Biol. 48, 914–919.

    Article  CAS  Google Scholar 

  • Chen Y., Wang Q., Li W., and Ruan X. 2007. Microbiotic crusts and their interrelations with environmental factors in the Gurbantonggut desert, western China. Environ. Geol. 52, 691–700.

    Article  Google Scholar 

  • DeSantis T.Z., Hugenholtz P., Larsen N., Rojas M., Brodie E.L., Keller K., Huber T., Dalevi D., Hu P., and Andersen G.L. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dojka M.A., Hugenholtz P., Haack S.K., and Pace N.R. 1998. Microbial diversity in a hydrocarbon- and chlorinated-solventcontaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 64, 3869–3877.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edgar R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.

    Article  CAS  PubMed  Google Scholar 

  • Francis C.A., Roberts K.J., Beman J.M., Santoro A.E., and Oakley B.B. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 102, 14683–14688.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Pichel F. and Pringault O. 2001. Microbiology: Cyanobacteria track water in desert soils. Nature 413, 380–381.

    Article  CAS  PubMed  Google Scholar 

  • Haas B.J., Gevers D., Earl A.M., Feldgarden M., Ward D.V., Giannoukos G., Ciulla D., Tabbaa D., Highlander S.K., and Sodergren E. 2011. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hawkes C.V. and Flechtner V.R. 2002. Biological soil crusts in a xeric Florida shrubland: composition, abundance, and spatial heterogeneity of crusts with different disturbance histories. Microb. Ecol. 43, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Hu Y., Wang X., Guo H., Zhao X., Gai S., and Yang D. 2011. Wind fluctuation over semi-fixed longitudinal dune in gurbantunggut desert. J. Desert Res. 31, 393–399 (In Chinese).

    Google Scholar 

  • Johansen J.R. 1993. Cryptogamic crusts of semiarid and arid lands of North America. J. Phycol. 29, 140–147.

    Article  Google Scholar 

  • Johnson S.L., Budinoff C.R., Belnap J., and Garcia-Pichel F. 2005. Relevance of ammonium oxidation within biological soil crust communities. Environ. Microbiol. 7, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Kroy K., Sauermann G., and Herrmann H.J. 2002. Minimal model for sand dunes. Phys. Rev. Lett. 88, 0543–1.

    Article  Google Scholar 

  • Kuske C.R., Yeager C.M., Johnson S., Ticknor L.O., and Belnap J. 2012. Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J. 6, 886–897.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lan S.B., Wu L., Zhang D.L., and Hu C.X. 2013. Assessing level of development and successional stages in biological soil crusts with biological indicators. Microb. Ecol. 66, 394–403.

    Article  CAS  PubMed  Google Scholar 

  • Lindström E.S. and Langenheder S. 2012. Local and regional factors influencing bacterial community assembly. Environ. Microbiol. Rep. 4, 1–9.

    Article  PubMed  Google Scholar 

  • Luedemann G.M. 1968. Geodermatophilus, a new genus of the Dermatophilaceae (Actinomycetales). J. Bacteriol. 96, 1848–1858.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lueders T. and Friedrich M.W. 2003. Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Appl. Environ. Microbiol. 69, 320–326.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marusenko Y., Huber D.P., and Hall S.J. 2013. Fungi mediate nitrous oxide production but not ammonia oxidation in aridland soils of the southwestern US. Soil Biol. Biochem. 63, 24–36.

    Article  CAS  Google Scholar 

  • Montero-Calasanz M.C., Goker M., Potter G., Rohde M., Sproer C., Schumann P., Gorbushina A.A., and Klenk H.P. 2012. Geodermatophilus arenarius sp. nov., a xerophilic actinomycete isolated from Saharan desert sand in Chad. Extremophiles 16, 903–909.

    Article  CAS  PubMed  Google Scholar 

  • Montero-Calasanz M.C., Goker M., Broughton W.J., Cattaneo A., Favet J., Potter G., Rohde M., Sproer C., Schumann P., Klenk H.P., and et al. 2013a. Geodermatophilus tzadiensis sp. nov., a UV radiation-resistant bacterium isolated from sand of the Saharan desert. Syst. Appl. Microbiol. 36, 177–182.

    Article  Google Scholar 

  • Montero-Calasanz M.C., Goker M., Potter G., Rohde M., Sproer C., Schumann P., Gorbushina A.A., and Klenk H.P. 2013b. Geodermatophilus africanus sp. nov., a halotolerant actinomycete isolated from Saharan desert sand. Antonie van Leeuwenhoek 104, 207–216.

    Article  CAS  Google Scholar 

  • Montero-Calasanz M.C., Goker M., Potter G., Rohde M., Sproer C., Schumann P., Gorbushina A.A., and Klenk H.P. 2013c. Geodermatophilus normandii sp. nov., isolated from Saharan desert sand. Int. J. Syst. Evol. Microbiol. 63, 3437–3443.

    Article  CAS  Google Scholar 

  • Montero-Calasanz M.C., Goker M., Potter G., Rohde M., Sproer C., Schumann P., Gorbushina A.A., and Klenk H.P. 2013d. Geodermatophilus saharensis sp. nov., isolated from sand of the Saharan desert in Chad. Arch. Microbiol. 195, 153–159.

    Article  CAS  PubMed  Google Scholar 

  • Montero-Calasanz M.C., Goker M., Potter G., Rohde M., Sproer C., Schumann P., Klenk H.P., and Gorbushina A.A. 2013e. Geodermatophilus telluris sp. nov., an actinomycete isolated from Saharan desert sand. Int. J. Syst. Evol. Microbiol. 63, 2254–2259.

    Article  CAS  Google Scholar 

  • Nubel U., Garcia-Pichel F., and Muyzer G. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327–3332.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ollivier J., Towe S., Bannert A., Hai B., Kastl E.M., Meyer A., Su M.X., Kleineidam K., and Schloter M. 2011. Nitrogen turnover in soil and global change. FEMS Microbiol. Ecol. 78, 3–16.

    Article  CAS  PubMed  Google Scholar 

  • Page A.L. 1982. Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy, Soil Science Society of America.

    Google Scholar 

  • Pointing S.B. and Belnap J. 2012. Microbial colonization and controls in dryland systems. Nat. Rev. Microbiol. 10, 551–562.

    Article  CAS  PubMed  Google Scholar 

  • Pruesse E., Quast C., Knittel K., Fuchs B.M., Ludwig W., Peplies J., and Glöckner F.O. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rao B.Q., Liu Y.D., Lan S.B., Wu P.P., Wang W.B., and Li D.H. 2012. Effects of sand burial stress on the early developments of cyanobacterial crusts in the field. Eur. J. Soil Biol. 48, 48–55.

    Article  Google Scholar 

  • Raskin L., Stromley J.M., Rittmann B.E., and Stahl D.A. 1994. Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl. Environ. Microbiol. 60, 1232–1240.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reeder J. and Knight R. 2010. Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nat. Methods 7, 668–669.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rotthauwe J.H., Witzel K.P., and Liesack W. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63, 4704–4712.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schumacher B.A. 2002. Methods for the determination of total organic carbon (TOC) in soils and sediments. National ESD, ed.: EPA.

    Google Scholar 

  • Shen J.P., Zhang L.M., Zhu Y.G., Zhang J.B., and He J.Z. 2008. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ. Microbiol. 10, 1601–1611.

    Article  CAS  PubMed  Google Scholar 

  • Soule T., Anderson I.J., Johnson S.L., Bates S.T., and Garcia-Pichel F. 2009. Archaeal populations in biological soil crusts from arid lands in North America. Soil Biol. Biochem. 41, 2069–2074.

    Article  CAS  Google Scholar 

  • Steven B., Gallegos-Graves L., Belnap J., and Kuske C.R. 2013. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. FEMS Microbiol. Ecol. 86, 101–113.

    Article  CAS  PubMed  Google Scholar 

  • Steven B., Gallegos-Graves L.V., Starkenburg S.R., Chain P.S., and Kuske C.R. 2012a. Targeted and shotgun metagenomic approaches provide different descriptions of dryland soil microbial communities in a manipulated field study. Environ. Microbiol. Rep. 4, 248–256.

    Article  PubMed  Google Scholar 

  • Steven B., Gallegos-Graves L.V., Yeager C.M., Belnap J., Evans R.D., and Kuske C.R. 2012b. Dryland biological soil crust cyanobacteria show unexpected decreases in abundance under longterm elevated CO2. Environ. Microbiol. 14, 3247–3258.

    Article  CAS  PubMed  Google Scholar 

  • Strauss S.L., Day T.A., and Garcia-Pichel F. 2012. Nitrogen cycling in desert biological soil crusts across biogeographic regions in the Southwestern United States. Biogeochemistry 108, 171–182.

    Article  Google Scholar 

  • Tang Y.Q., Li Y., Zhao J.Y., Chi C.Q., Huang L.X., Dong H.P., and Wu X.L. 2012. Microbial communities in long-term, waterflooded petroleum reservoirs with different in situ temperatures in the Huabei Oilfield, China. PLoS ONE 7, e33535.

    Article  Google Scholar 

  • Thomas A.D. and Dougill A.J. 2007. Spatial and temporal distribution of cyanobacterial soil crusts in the Kalahari: Implications for soil surface properties. Geomorphology 85, 17–29.

    Article  Google Scholar 

  • Tirkey J. and Adhikary S. 2005. Cyanobacteria in biological soil crusts of India. Curr. Sci. Bangalore 89, 5–5.

    Google Scholar 

  • Wang Q., Garrity G.M., Tiedje J.M., and Cole J.R. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang J., Kim J., Skogley E., and Schaff B. 1998. A simple spectrophotometric determination of nitrate in water, resin, and soil extracts. Soil Sci. Soc. Am. J. 62, 1108–1115.

    Article  CAS  Google Scholar 

  • Yao H., Gao Y., Nicol G.W., Campbell C.D., Prosser J.I., Zhang L., Han W., and Singh B.K. 2011. Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Appl. Environ. Microbiol. 77, 4618–4625.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeager C.M., Kornosky J.L., Housman D.C., Grote E.E., Belnap J., and Kuske C.R. 2004. Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado plateau and Chihuahuan desert. Appl. Environ. Microbiol. 70, 973–983.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu S.L., Tang Y.Q., Li Y., Zhang H., and Wu X.L. 2010. Gradient decrement of annealing time can improve PCR with fluorescentlabeled primers. J. Biosci. Bioeng. 110, 500–504.

    Article  CAS  PubMed  Google Scholar 

  • Zhang B., Zhang Y., Downing A., and Niu Y. 2011. Distribution and composition of cyanobacteria and microalgae associated with biological soil crusts in the Gurbantunggut Desert, China. Arid Land Res. Manag. 25, 275–293.

    Article  CAS  Google Scholar 

  • Zhang W., Zhang G.S., Liu G.X., Wang L., Dong X.P., Yue J., Li X.R., and An L.Z. 2012. Characteristics of cultivable microbial community number and structure at the southeast edge of Tengger Desert. Acta Ecologica Sinica 32, 567–577 (In Chinese).

    Article  Google Scholar 

  • Zhang B.C., Zhang Y.M., Zhao J.C., Wu N., Chen R.Y., and Zhang J. 2009. Microalgal species variation at different successional stages in biological soil crusts of the Gurbantunggut Desert, Northwestern China. Biol. Fert. Soils 45, 539–547.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxun Zhang.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Li, K., Zhang, H. et al. Spatial distribution of microbial communities associated with dune landform in the Gurbantunggut Desert, China. J Microbiol. 52, 898–907 (2014). https://doi.org/10.1007/s12275-014-4075-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-4075-3

Keywords

Navigation