Skip to main content
Log in

Effects of nutritional input and diesel contamination on soil enzyme activities and microbial communities in antarctic soils

  • Articles
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Pollution of Antarctic soils may be attributable to increased nutritional input and diesel contamination via anthropogenic activities. To investigate the effect of these environmental changes on the Antarctic terrestrial ecosystem, soil enzyme activities and microbial communities in 3 types of Antarctic soils were evaluated. The activities of alkaline phosphomonoesterase and dehydrogenase were dramatically increased, whereas the activities of β-glucosidase, urease, arylsulfatase, and fluorescein diacetate hydrolysis were negligible. Alkaline phosphomonoesterase and dehydrogenase activities in the 3 types of soils increased 3- to 10-fold in response to nutritional input, but did not increase in the presence of diesel contamination. Consistent with the enzymatic activity data, increased copy numbers of the phoA gene, encoding an alkaline phosphomonoesterase, and the 16S rRNA gene were verified using quantitative real-time polymerase chain reaction. Interestingly, dehydrogenase activity and 16S rRNA gene copy number increased slightly after 30 days, even under diesel contamination, probably because of adaptation of the bacterial population. Intact Antarctic soils showed a predominance of Actinobacteria phylum (mostly Pseudonorcarida species) and other phyla such as Proteobacteria, Chloroflexi, Planctomycetes, Firmicutes, and Verrucomicrobia were present in successively lower proportions. Nutrient addition might act as a selective pressure on the bacterial community, resulting in the prevalence of Actinobacteria phylum (mostly Arthrobacter species). Soils contaminated by diesel showed a predominance of Proteobacteria phylum (mostly Phyllobacterium species), and other phyla such as Actinobacteria, Bacteroidetes, Planctomycetes, and Gemmatimonadetes were present in successively lower proportions. Our data reveal that nutritional input has a dramatic impact on bacterial communities in Antarctic soils and that diesel contamination is likely toxic to enzymes in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, G. and Duncan, H. 2001. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem. 33, 943–951.

    Article  CAS  Google Scholar 

  • Aislabie, J.M., Chhour, K.L., Saul, D.J., Miyauchi, S., Ayton, J., Paetzold, R.F., and Balks, M.R. 2006. Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol. Biochem. 38, 3041–3056.

    Article  CAS  Google Scholar 

  • Aislabie, J.M., Jordan, S., and Barker, G.M. 2008. Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma 144, 9–20.

    Article  CAS  Google Scholar 

  • Bauer, E., Pennerstorfer, C., Holubar, P., Plas, C., and Braun, R. 1991. Microbial activity measurements in soil: a comparison of methods. J. Microbiol. Methods 14, 109–117.

    Article  CAS  Google Scholar 

  • Bhattacharyya, P., Tripathy, S., Chakrabarti, K., Chakraborty, A., and Banik, P. 2008. Fractionation and bioavailability of metals and their impacts on microbial properties in sewage irrigated soil. Chemosphere 72, 543–550.

    Article  PubMed  CAS  Google Scholar 

  • Brohon, B., Delolme, C., and Gourdon, R. 2001. Complementarity of bioassays and microbial activity measurements for the evaluation of hydrocarbon-contaminated soils quality. Soil Biol. Biochem. 33, 883–891.

    Article  CAS  Google Scholar 

  • Burns, R.G. 1982. Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biol. Biochem. 14, 423–427.

    Article  CAS  Google Scholar 

  • Casida, L.E., Klein, D.A., and Santoro, T. 1964. Soil dehydrogenase activity. Soil Sci. 98, 371–376.

    Article  CAS  Google Scholar 

  • Chendrayan, K., Adhya, T.K., and Sethunathan, N. 1980. Dehydrogenase and invertase activities of flooded soils. Soil Biol. Biochem. 12, 217–273.

    Article  Google Scholar 

  • Davis, R.C. 1981. Structure and function of two Antarctic terrestrial moss communities. Ecol. Monogr. 51, 125–143.

    Article  Google Scholar 

  • De Varennes, A., Abreu, M.M., Qu, G., and Cristina, C.Q. 2010. Enzymatic activity of a mine soil varies according to vegetation cover and level of compost applied. Int. J. Phytoremediation 12, 371–383.

    Article  PubMed  Google Scholar 

  • Dick, R.P. and Breakwell, D.P. 1996. Methods for assessing soil quality, pp. 247–271. In Turco, R.F., Doran, J.W., and Jones, A.J. (eds.). Soil Science Society of American: Madison, Wis, USA.

    Google Scholar 

  • Dicka, W.A., Chenga, L., and Wangb, P. 2000. Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biol. Biochem. 32, 1915–1919.

    Article  Google Scholar 

  • Donderski, W., Mudryk, Z., and Walczak, M. 1998. Utilization of low molecular weight organic compounds by marine neustonic and planktonic bacteria. Pol. J. Environ. Stud. 7, 279–283.

    CAS  Google Scholar 

  • Eibes, G., Cajthaml, T., Moreira, M.T., Feijoo, G., and Lema, J.M. 2006. Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere 64, 408–414.

    Article  PubMed  CAS  Google Scholar 

  • Freney, J.R. 1961. Some observation on the nature of organic sulphur compounds in soils. Aust. J. Agric. Res. 12, 424–432.

    Article  CAS  Google Scholar 

  • Ganzert, L., Lipski, A., Hubberten, H. W., and Wagner, D. 2011. The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island, South Shetland Archipelago, Antarctica. FEMS Microbiol. Ecol. 76, 476–491.

    Article  PubMed  CAS  Google Scholar 

  • Heal, O.W. and Block, W. 1987. Soil biological processes in the North and South. Ecol. Bull. 3, 47–57.

    Google Scholar 

  • Hinojosa, M.B., Carreira, J.A., Rodríguez-Maroto, J.M., and García-Ruíz, R. 2008. Effects of pyrite sludge pollution on soil enzyme activities: ecological dose-response model. Sci. Total Environ. 396, 89–99.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, D., Kremer, R.J., Bergfield, W.A., Kim, K.Y., and Cacnio, V.N. 1995. Evaluation of microbial methods as potential indicators of soil quality in historical agricultural fields. Bio.l Fertil. Soils 19, 297–302.

    Article  Google Scholar 

  • Jung, J., Yeom, J., Kim, J., Han, J., Lim, H.S., Park, H., Hyun, S., and Park, W. 2011. Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils. Res. Microbiol. 162, 1018–1026.

    Article  PubMed  CAS  Google Scholar 

  • Jung, J., Yeom, J., Han, J., Kim, J., and Park, W. 2012. Seasonal change of environmental factors and gene abundances related to nitrogen cycle in forest soils. J. Microbiol. 50, 365–373.

    Article  PubMed  CAS  Google Scholar 

  • Kandeler, E. and Gerber, H. 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 6, 68–72.

    Article  CAS  Google Scholar 

  • Kandeler, E. 1996. Methods in soil biology, pp. 171–174. In Schinner, F., Öhlinger, R., Kandeler, E., and Margesin, R. (eds.), Springer, Berlin, Germany.

    Google Scholar 

  • Kurosumi, A., Sasaki, C., Yamashita, Y., and Nakamura, Y. 2008. Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohyd. Polym. 76, 333–335.

    Article  Google Scholar 

  • Labud, V., Garcia, C., and Hernandez, T. 2007. Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere 66, 1863–1871.

    Article  PubMed  CAS  Google Scholar 

  • Lane, D.J. 1991. Nucleic acid techniques in bacterial systematics. pp. 115–175 In Stackebrandt, E. and Goodfellow, M. (eds.), Wiley, New York, N.Y., USA.

    Google Scholar 

  • Margesin, R. 1995. Methods in soil biology. pp. 213–217. In Schinner, F., Öhlinger, R., Kandeler, E., and Margesin, R. (eds.), Springer, Berlin, Germany.

    Google Scholar 

  • Martins, C.C., Bícego, M.C., Rose, N.L., Taniguchi, S., and Lourenço, R.A. 2010. Historical record of polycyclic aromatic hydrocarbons (PAHs) and spheroidal carbonaceous particles (SCPs) in marine sediment cores from Admiralty Bay, King George Island, Antarctica. Environ. Pollut. 158, 192–200.

    Article  PubMed  CAS  Google Scholar 

  • Nannipieri, P., Greco, S., and Ceccanti, B. 1990. Ecological significance of the biological activity in soil, pp. 293–355. In Bollag, J.M. and Stotzky, G. (eds.). Soil biochemistry, Marcel Dekker In.

  • Nelson, C.E. and Carlson, C.A. 2011. Differential response of high-elevation planktonic bacterial community structure and metabolism to experimental nutrient enrichment. PLoS One 6, e18320.

    Article  PubMed  CAS  Google Scholar 

  • Niederberger, T.D., McDonald, I.R., Hacker, A.L., Soo, R.M., Barrett, J.E., Wall, D.H., and Cary, S.C. 2008. Microbial community composition in soils of Northern Victoria Land, Antarctica. Environ. Microbiol. 10, 1713–1724.

    Article  PubMed  CAS  Google Scholar 

  • Perucci, P. and Scarponi, L. 1985. Effect of different treatments with crop residues on soil phosphatase activity. Biol. Fertil. Soils 1, 111–115.

    Article  CAS  Google Scholar 

  • Rodríguez-Loinaz, G., Onaindia, M., Amezaga, I., and Mijangos, I. 2008. Relationship between vegetation diversity and soil functional diversity in native mixed-oak forests. Soil Biol. Biochem. 40, 49–60.

    Article  Google Scholar 

  • Roscoe, R., Vasconcellos, C.A., Furtini-Neto, A.E., Guedes, G.A.A., and Fernandes, L.A. 2000. Urease activity and its relation to soil organic matter, microbial biomass nitrogen and urea-nitrogen assimilation by maize in a Brazilian Oxisol under no-tillage and tillage systems. Biol. Fertil. Soils 32, 52–59.

    Article  CAS  Google Scholar 

  • Saul, D.J., Aislabie, J.M., Brown, C.E., Harris, L., and Foght, J.M. 2005. Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol. Ecol. 53, 141–155.

    Article  PubMed  CAS  Google Scholar 

  • Schloter, M., Dilly, O., and Munch, J.C. 2003. Indicators for evaluating soil quality. Agric. Ecosyst. Environ. 98, 255–262.

    Article  Google Scholar 

  • Schnürer, J. and Rosswall, T. 1982. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl. Environ. Microbiol. 43, 1256–1261.

    PubMed  Google Scholar 

  • Shivaji, S., Reddy, G.S.N., Aduri, R.P., Kutty, R., and Ravenschlag, K. 2004. Bacterial diversity of a soil sample from Schirmacher Oasis, Antarctica. Cell Mol. Biol. (Noisy-le-grand) 50, 525–536.

    CAS  Google Scholar 

  • Shravage, B.V., Dayananda, K.M., Patole, M.S., and Shouche, Y.S. 2007. Molecular microbial diversity of a soil sample and detection of ammonia oxidizers from Cape Evans, McMurdo Dry Valley, Antarctica. Microbiol. Res. 162, 15–25.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J.J., Tow, L.A., Stafford, W., Cary, C., and Cowan, D.A. 2006. Bacterial diversity in three different Antarctic cold desert mineral soils. Microb. Ecol. 51, 413–421.

    Article  PubMed  Google Scholar 

  • Sweet, S.T., Sericano, J.L., Denoux, G., Klein, A.G., Kennicutt, M.C., and Wade, T.L. 2006. Spatial and temporal variability of contamination in the marine environment at McMurdo Station, Antiarctica. In: Proceedings of the Society of Environmental Toxicology and Chemistry 27th Annual Meeting in North America, Montreal, Quebec, Canada, 143.

  • Tabatabai, M.A. and Bremner, J.M. 1970. Arylsulfatase activity in soils. Soil Sci. Soc. Am. Proc. 34, 225–229.

    Article  CAS  Google Scholar 

  • Tabatabai, M.A. 1982. Soil enzymes. In Page, A.L., Miller, R.H., and Keeney, D.R. (eds.). Methods of soil analysis, part 2, pp. 775–947. Am soc Agron, Soil Sci Soc American, Madison Wisconsin

    Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4, molecular evolutionary genetics analysis, MEGA software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  • Taylora, J.P., Wilsona, B., Millsb, M.S., and Burnsa, R.G. 2002. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol. Biochem. 34, 387–401.

    Article  Google Scholar 

  • Torriani, A. 1990. From cell membrane to nucleotides: the phosphate regulon in Escherichia coli. Bioessays 12, 371–376.

    Article  PubMed  CAS  Google Scholar 

  • Turner B.L. 2010. Variation in the optimum pH of hydrolytic enzyme activities in tropical rain forest soils. Appl. Environ. Microbiol. 76, 6485–6493.

    Article  PubMed  CAS  Google Scholar 

  • Varin, T., Lovejoy, C., Jungblut, A.D., Vincent, W.F., and Corbeil, J. 2012. Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Appl. Environ. Microbiol. 78, 549–559.

    Article  PubMed  Google Scholar 

  • Yergeau, E., Sanschagrin, S., Beaumier, D., Greer, C. W. 2012. Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high Arctic soils. PLoS ONE 7, e30058.

    Article  PubMed  CAS  Google Scholar 

  • Wania, F. and Mackay, D. 1993. Global fractionation and cold comdensation of low volatillity organochlorine compounds in polar region. Ambio 22, 10–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woojun Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, J., Jung, J., Hyun, S. et al. Effects of nutritional input and diesel contamination on soil enzyme activities and microbial communities in antarctic soils. J Microbiol. 50, 916–924 (2012). https://doi.org/10.1007/s12275-012-2636-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-012-2636-x

Keywords

Navigation