Skip to main content
Log in

Mn, N co-doped Co nanoparticles/porous carbon as air cathode for highly efficient rechargeable Zn-air batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are generally catalyzed by precious metals (Pt) and metal oxides (IrO2) which still have many shortages including expensive price, poor selectivity and undesirable stability. In this work, we report a Mn0-doped CoNx on N-doped porous carbon (Mn-CoNx/N-PC) composite from carbonizing metal-organic framework (MOF) derivative as the dual-functional catalyst to boost both the ORR and OER performances. Owing to the strong coordination effect between nitrogen and metal elements, the introduction of N can obviously improve the content of Co-N-C active sites for ORR. Meanwhile, the Mn-doping significantly regulates the electronic structure of the Co element and increases the content of Co0 which provide efficient OER active sites. Mn-CoNx/N-PC catalyst delivers super dual-functional activity with a half-wave potential of 0.85 V, better than the 20% Pt/C catalyst (0.82 V). When used in Zn-air batteries for testing, Mn-CoNx/N-PC electrocatalyst shows a high power density (145 mW·cm−2) and good cycle performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, X. B. Oxygen electrocatalysts in metal-air batteries: From aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 2014, 43, 7746–7786.

    Article  CAS  Google Scholar 

  2. Tan, P.; Chen, B.; Xu, H. R.; Zhang, H. C.; Cai, W. Z.; Ni, M.; Liu, M. L.; Shao, Z. P. Flexible Zn-and Li-air batteries: Recent advances, challenges, and future perspectives. Energy Environ. Sci. 2017, 10, 2056–2080.

    Article  CAS  Google Scholar 

  3. Li, Y. B.; Fu, J.; Zhong, C.; Wu, T. P.; Chen, Z. W.; Hu, W. B.; Amine, K.; Lu, J. Recent advances in flexible zinc-based rechargeable batteries. Adv. Energy Mater. 2019, 9, 1802605.

    Article  Google Scholar 

  4. Yang, L.; Zeng, X. F.; Wang, W. C.; Cao, D. P. Recent progress in mof-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv. Energy Mater. 2018, 28, 1704537.

    Google Scholar 

  5. Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A. P.; Fowler, M.; Chen, Z. W. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives. Adv. Mater. 2017, 29, 1604685.

    Article  Google Scholar 

  6. Tao, L.; Lin, C. Y.; Dou, S.; Feng, S.; Chen, D. W.; Liu, D. D.; Huo, J.; Xia, Z. H.; Wang, S. Y. Creating coordinatively unsaturated metal sites in metal-organic-frameworks as efficient electrocatalysts for the oxygen evolution reaction: Insights into the active centers. Nano Energy 2017, 41, 417–425.

    Article  CAS  Google Scholar 

  7. Xu, Q. C.; Liu, Y.; Jiang, H.; Hu, Y. J.; Liu, H. L.; Li, C. Z. Unsaturated sulfur edge engineering of strongly coupled MoS2 nanosheet-carbon macroporous hybrid catalyst for enhanced hydrogen generation. Adv. Energy Mater. 2019, 9, 1802553.

    Article  Google Scholar 

  8. Li, X. M.; Dong, F.; Xu, N. N.; Zhang, T.; Li, K. X.; Qiao, J. L. Co3O4/MnO2/hierarchically porous carbon as superior bifunctional electrodes for liquid and all-solid-state rechargeable zinc-air batteries. ACS Appl. Mater. Interfaces 2018, 10, 15591–15601.

    Article  CAS  Google Scholar 

  9. Azadmanjiri, J.; Wang, J.; Berndt, C. C.; Yu, A. M. 2D layered organic-inorganic heterostructures for clean energy applications. J. Mater. Chem. A 2018, 6, 3824–3849.

    Article  CAS  Google Scholar 

  10. Wu, X.; Meng, G.; Liu, W. X.; Li, T.; Yang, Q.; Sun, X. M.; Liu, J. F. Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries. Nano Res. 2017, 11, 163–173.

    Article  Google Scholar 

  11. Chen, P. Z.; Xu, K.; Fang, Z. W.; Tong, Y.; Wu, J. C.; Lu, X. L.; Peng, X.; Ding, H.; Wu, C. Z.; Xie, Y. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 14710–14714.

    Article  CAS  Google Scholar 

  12. You, B.; Jiang, N.; Sheng, M. L.; Drisdell, W. S.; Yano, J.; Sun, Y. J. Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal. 2015, 5, 7068–7076.

    Article  CAS  Google Scholar 

  13. Zhang, H. X.; Jiang, H.; Hu, Y. J.; Saha, P.; Li, C. Z. Mo-triggered amorphous Ni3S2 nanosheets as efficient and durable electrocatalysts for water splitting. Mater. Chem. Front. 2018, 2, 1462–1466.

    Article  CAS  Google Scholar 

  14. Hou, Y.; Wen, Z. H.; Cui, S. M.; Ci, S. Q.; Mao, S.; Chen, J. H. An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv. Funct. Mater. 2015, 25, 872–882.

    Article  CAS  Google Scholar 

  15. Li, C. L.; Wu, M. C.; Liu, R. High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co-N-C nanofibers with embedding FeCo alloy nanoparticles. Appl. Catal. B Environ. 2019, 244, 150–158.

    Article  CAS  Google Scholar 

  16. Cao, R. G.; Lee, J. S.; Liu, M. L.; Cho, J. Recent progress in non-precious catalysts for metal-air batteries. Adv. Energy Mater. 2012, 2, 816–829.

    Article  CAS  Google Scholar 

  17. Cheng, F. Y.; Su, Y.; Liang, J.; Tao, Z. L.; Chen, J. MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem. Mater. 2010, 22, 898–905.

    Article  CAS  Google Scholar 

  18. Chen, Y. N.; Guo, Y. B.; Cui, H. J.; Xie, Z. J.; Zhang, X.; Wei, J. P.; Zhou, Z. Bifunctional electrocatalysts of MOF-derived Co-N/C on bamboo-like MnO nanowires for high-performance liquid-and solid-state Zn-air batteries. J. Mater. Chem. A 2018, 6, 9716–9722.

    Article  CAS  Google Scholar 

  19. He, K.; Cao, Z.; Liu, R. R.; Miao, Y.; Ma, H. Y.; Ding, Y. In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction. Nano Res. 2016, 9, 1856–1865.

    Article  CAS  Google Scholar 

  20. Huang, X. F.; Oleynikov, P.; He, H. L.; Mayoral, A.; Mu, L. Q.; Lin, F.; Zhang, Y. B. Docking MOF crystals on graphene support for highly selective electrocatalytic peroxide production. Nano Res., in press, https://doi.org/10.1007/s12274-021-3382-3.

  21. Amiinu, I. S.; Liu, X. B.; Pu, Z. H.; Li, W. Q.; Li, Q. D.; Zhang, J.; Tang, H. L.; Zhang, H. N.; Mu, S. C. From 3D ZIF nanocrystals to Co-N/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1704638.

    Article  Google Scholar 

  22. Dou, S.; Li, X. Y.; Tao, L.; Huo, J.; Wang, S. Y. Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen electrocatalysis. Chem. Commun. 2016, 52, 9727–9730.

    Article  CAS  Google Scholar 

  23. Xu, Q. C.; Jiang, H.; Li, Y. H.; Liang, D.; Hu, Y. J.; Li, C. Z. In-situ enriching active sites on co-doped Fe-Co4N@N-C nanosheet array as air cathode for flexible rechargeable Zn-air batteries. Appl. Catal. B Environ. 2019, 256, 117893.

    Article  CAS  Google Scholar 

  24. Wei, L. C.; Qiu, L. J.; Liu, Y. Y.; Zhang, J. M.; Yuan, D. S.; Wang, L. Mn-doped Co-N-C dodecahedron as a bifunctional electrocatalyst for highly efficient Zn-air batteries. ACS Sustainable Chem. Eng. 2019, 7, 14180–14188.

    Article  CAS  Google Scholar 

  25. Yu, P.; Wang, L.; Sun, F. F.; Xie, Y.; Liu, X.; Ma, J. Y.; Wang, X. W.; Tian, C. G.; Li, J. H.; Fu, H. G. Co Nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn-air batteries. Adv. Mater. 2019, 31, 1901666.

    Article  Google Scholar 

  26. Meng, F. L.; Zhong, H. X.; Bao, D.; Yan, J. M.; Zhang, X. B. In situ coupling of strung Co4N and intertwined N-C fibers toward freestanding bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J. Am. Chem. Soc. 2016, 138, 10226–10231.

    Article  CAS  Google Scholar 

  27. Chen, B. H.; He, X. B.; Yin, F. X.; Wang, H.; Liu, D. J.; Shi, R. X.; Chen, J. N.; Yin, H. W. Mo-Co@N-doped carbon (M = Zn or Co): Vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn-air battery. Adv. Funct. Mater. 2017, 27, 1700795.

    Article  Google Scholar 

  28. Liang, Z. Z.; Zhang, C. C.; Yuan, H. T.; Zhang, W.; Zheng, H. Q.; Cao, R. PVP-assisted transformation of a metal-organic framework into Co-embedded N-enriched meso/microporous carbon materials as bifunctional electrocatalysts. Chem. Commun. 2018, 54, 7519–7522.

    Article  CAS  Google Scholar 

  29. Chen, L.; Jiang, H.; Jiang, H. B.; Zhang, H. X.; Guo, S. J.; Hu, Y. J.; Li, C. Z. Mo-based ultrasmall nanoparticles on hierarchical carbon nanosheets for superior lithium ion storage and hydrogen generation catalysis. Adv. Energy Mater. 2017, 7, 1602782.

    Article  Google Scholar 

  30. Kang, B. K.; Im, S. Y.; Lee, J.; Kwag, S. H.; Kwon, S. B.; Tiruneh, S.; Kim, M. J.; Kim, J. H.; Yang, W. S.; Lim, B. et al. In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction. Nano Res. 2019, 12, 1605–1611.

    Article  CAS  Google Scholar 

  31. Wang, Q. C.; Lei, Y. P.; Chen, Z. Y.; Wu, N.; Wang, Y. B.; Wang, B.; Wang, Y. D. Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene-CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn-air batteries. J. Mater. Chem. A 2018, 6, 516–526.

    Article  CAS  Google Scholar 

  32. Lei, Z.; Tan, Y. Y.; Zhang, Z. Y.; Wu, W.; Cheng, N. C.; Chen, R. Z.; Mu, S. C.; Sun, X. L. Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries. Nano Res. 2021, 14, 868–878.

    Article  CAS  Google Scholar 

  33. Yoon, K. R.; Shin, K.; Park, J.; Cho, S. H.; Kim, C.; Jung, J. W.; Cheong, J. Y.; Byon, H. R.; Lee, H. M.; Kim, I. D. Brush-like cobalt nitride anchored carbon nanofiber membrane: Current collector-catalyst integrated cathode for long cycle Li-O2 batteries. ACS Nano 2018, 12, 128–139.

    Article  CAS  Google Scholar 

  34. Wang, W. H.; Kuai, L.; Cao, W.; Huttula, M.; Ollikkala, S.; Ahopelto, T.; Honkanen, A. P.; Huotari, S.; Yu, M. K.; Geng, B. Y. Mass-production of mesoporous MnCo2O4 spinels with manganese(IV)-and cobalt(II)-rich surfaces for superior bifunctional oxygen electrocatalysis. Angew. Chem., Int. Ed. 2017, 56, 14977–14981.

    Article  CAS  Google Scholar 

  35. Cao, X. C.; Wu, J.; Jin, C.; Tian, J. H.; Strasser, P.; Yang, R. Z. MnCo2O4 anchored on P-doped hierarchical porous carbon as an electrocatalyst for high-performance rechargeable Li-O2 batteries. ACS Catal. 2015, 5, 4890–4896.

    Article  CAS  Google Scholar 

  36. Kuo, C. H.; Mosa, I. M.; Thanneeru, S.; Sharma, V.; Zhang, L. C.; Biswas, S.; Aindow, M.; Alpay, S. P.; Rusling, J. F.; Suib, S. L. et al. Facet-dependent catalytic activity of MnO electrocatalysts for oxygen reduction and oxygen evolution reactions. Chem. Commun. 2015, 51, 5951–5954.

    Article  CAS  Google Scholar 

  37. Xu, J. Y.; Zhang, H.; Xu, P. B.; Wang, R. F.; Tong, Y. L.; Lu, Q. Y.; Gao, F. In situ construction of hierarchical Co/MnO@graphite carbon composites for highly supercapacitive and OER electrocatalytic performances. Nanoscale 2018, 10, 13702–13712.

    Article  CAS  Google Scholar 

  38. Menezes, P. W.; Indra, A.; Sahraie, N. R.; Bergmann, A.; Strasser, P.; Driess, M. Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions. ChemSusChem 2015, 8, 164–171.

    Article  CAS  Google Scholar 

  39. Wang, L. B.; Zhang, W. B.; Zheng, X. S.; Chen, Y. Z.; Wu, W. L.; Qiu, J. X.; Zhao, X. C.; Zhao, X.; Dai, Y. Z.; Zeng, J. Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation. Nat. Energy 2017, 2, 869–876.

    Article  CAS  Google Scholar 

  40. Xu, Q. C.; Jiang, H.; Zhang, H. X.; Jiang, H. B.; Li, C. Z. Phosphorus-driven mesoporous Co3O4 nanosheets with tunable oxygen vacancies for the enhanced oxygen evolution reaction. Electrochim. Acta 2018, 259, 962–967.

    Article  CAS  Google Scholar 

  41. Liu, X. H.; Xu, L. J.; Xu, G. Y.; Jia, W. D.; Ma, Y. F.; Zhang, Y. Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols or cyclohexanes over magnetic CoNx@NC catalysts under mild conditions. ACS Catal. 2016, 6, 7611–7620.

    Article  CAS  Google Scholar 

  42. Huang, M. Q.; Liu, W. W.; Wang, L.; Liu, J. W.; Chen, G. Y.; You, W. B.; Zhang, J.; Yuan, L. J.; Zhang, X. F.; Che, R. C. Self-transforming ultrathin α-Co(OH)2 nanosheet arrays from metalorganic framework modified graphene oxide with sandwichlike structure for efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 810–817.

    Article  CAS  Google Scholar 

  43. Li, Y. B.; Zhong, C.; Liu, J.; Zeng, X. Q.; Qu, S. X.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Lu, J. Atomically thin mesoporous Co3O4 layers strongly coupled with N-rGO nanosheets as high-performance bifunctional catalysts for 1D knittable Zinc-air batteries. Adv. Mater. 2018, 30, 1703657.

    Article  Google Scholar 

  44. Nguyen, A. I.; Suess, D. L. M.; Darago, L. E.; Oyala, P. H.; Levine, D. S.; Ziegler, M. S.; Britt, R. D.; Tilley, T. D. Manganese-cobalt oxido cubanes relevant to manganese-doped water oxidation catalysts. J. Am. Chem. Soc. 2017, 139, 5579–5587.

    Article  CAS  Google Scholar 

  45. Wang, H.; Liu, R. P.; Li, Y. T.; Lü, X. J.; Wang, Q.; Zhao, S. Q.; Yuan, K. J.; Cui, Z. M.; Li, X.; Xin, S. et al. Durable and efficient hollow porous oxide spinel microspheres for oxygen reduction. Joule 2018, 2, 337–348.

    Article  CAS  Google Scholar 

  46. Hu, L. B.; Wei, Z. X.; Yu, F.; Yuan, H. F.; Liu, M. C.; Wang, G.; Peng, B. H.; Dai, B.; Ma, J. M. Defective ZnS nanoparticles anchored in situ on N-doped carbon as a superior oxygen reduction reaction catalyst. J. Energy Chem. 2019, 39, 152–159.

    Article  Google Scholar 

  47. Yang, L.; Shi, L.; Wang, D.; Lv, Y. L.; Cao, D. P. Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy 2018, 50, 691–698.

    Article  CAS  Google Scholar 

  48. Meng, F. L.; Wang, Z. L.; Zhong, H. X.; Wang, J.; Yan, J. M.; Zhang, X. B. Reactive multifunctional template-induced preparation of Fe-N-doped mesoporous carbon microspheres towards highly efficient electrocatalysts for oxygen reduction. Adv. Mater. 2016, 28, 7948–7955.

    Article  CAS  Google Scholar 

  49. Zhao, J.; Fu, N.; Liu, R. Graphite-wrapped Fe core-shell nanoparticles anchored on graphene as pH-universal electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2018, 10, 28509–28516.

    Article  CAS  Google Scholar 

  50. Zhou, N.; Wang, N.; Wu, Z. X.; Li, L. G. Probing active sites on metal-free, nitrogen-doped carbons for oxygen electroreduction: A review. Catalysts 2018, 8, 509.

    Article  Google Scholar 

  51. Hu, H.; Guan, B. Y.; Xia, B. Y.; Lou, X. W. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J. Am. Chem. Soc. 2015, 137, 5590–5595.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Gansu Provincial Natural Science Foundation of China (No. 17JR5RA198), the Fundamental Research Funds for the Central Universities (Nos. lzujbky-2018-119, lzujbky-2018-ct08, and lzujbky-2019-it23), Key Areas Scientific and Technological Research Projects in Xinjiang Production and Construction Corps (No. 2018AB004), the National Natural Science Foundation of China (No. 11975114), Cooperation project of Gansu Academy of Sciences(No. 2020HZ-2), the fund of State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals (No. SKLAB02019001) and Cooperation project of Gansu Academy of Sciences (No. 2020HZ-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanglong Peng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Ma, F., Yang, H. et al. Mn, N co-doped Co nanoparticles/porous carbon as air cathode for highly efficient rechargeable Zn-air batteries. Nano Res. 15, 1942–1948 (2022). https://doi.org/10.1007/s12274-021-3837-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3837-6

Keywords

Navigation