Skip to main content
Log in

In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The oxygen evolution reaction (OER) is a pivotal process for water-splitting and many other energy technologies involving oxygen electrodes. Herein, a new synthesis strategy is proposed to prepare OER catalysts based on a simple yet flexible in situ decomposition of Co-based acetate hydroxide metal-organic frameworks (MOFs). This process allows straightforward fabrication of various 2D hydroxide ultrathin nanosheets (UNSs) with excellent component controllability. The as-obtained Co-based hydroxide UNSs demonstrate superior catalytic activity for the OER due to the exposure of numerous active sites. In particular, the CoNi hydroxide UNSs exhibit low overpotentials (η) of 324 and 372 mV at current densities of 10 and 100 mA·cm–2, respectively; a large turnover frequency (TOF) of 0.16 s–1 at η = 380 mV; and a small Tafel slope of 33 mV·dec–1 in an alkaline environment. Importantly, these values are superior to those of the state-of-theart IrO2 commercial electrocatalyst. This facile strategy enables the exploration of more efficient and economic OER electrocatalysts with various constituents and opens a promising avenue for large-scale fabrication of functional nanocatalysts for use in clean energy technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

    Article  Google Scholar 

  2. Trancik, J. E. Renewable energy: Back the renewables boom. Nature 2014, 507, 300–302.

    Article  Google Scholar 

  3. Gong, M.; Wang, D.-Y.; Chen, C.-C.; Hwang, B.-J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46.

    Article  Google Scholar 

  4. Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

    Article  Google Scholar 

  5. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    Article  Google Scholar 

  6. Liu, E. Z.; Qi, L. L.; Bian, J. J.; Chen, Y. H.; Hu, X. Y.; Fan, J.; Liu, H. C.; Zhu, C. J.; Wang, Q. P. A facile strategy to fabricate plasmonic Cu modified TiO2 nano-flower films for photocatalytic reduction of CO2 to methanol. Mater. Res. Bull. 2015, 68, 203–209.

    Article  Google Scholar 

  7. Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

    Article  Google Scholar 

  8. Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

    Article  Google Scholar 

  9. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Article  Google Scholar 

  10. Kanan, M. W.; Surendranath, Y.; Nocera, D. G. Cobaltphosphate oxygen-evolving compound. Chem. Soc. Rev. 2009, 38, 109–114.

    Article  Google Scholar 

  11. Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

    Article  Google Scholar 

  12. Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Let. 2012, 3, 399–404.

    Article  Google Scholar 

  13. Wu, J.; Ren, Z. Y.; Du, S. C.; Kong, L. J.; Liu, B. W.; Xi, W.; Zhu, J. Q.; Fu, H. G. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Res. 2016, 9, 713–725.

    Article  Google Scholar 

  14. Jang, D. M.; Kwak, I. H.; Kwon, E. L.; Jung, C. S.; Im, H. S.; Park, K.; Park, J. Transition-metal doping of oxide nanocrystals for enhanced catalytic oxygen evolution. J. Phys. Chem. C 2015, 119, 1921–1927.

    Article  Google Scholar 

  15. Chen, D. J.; Chen, C.; Baiyee, Z. M.; Shao, Z. P.; Ciucci, F. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 2015, 115, 9869–9921.

    Article  Google Scholar 

  16. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

    Article  Google Scholar 

  17. Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60–63.

    Article  Google Scholar 

  18. Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; de Araújo, J. F.; Reier, T.; Dau, H.; Strasser, P. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 2015, 6, 8625.

    Article  Google Scholar 

  19. Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.

    Article  Google Scholar 

  20. Hu, H.; Guan, B. Y.; Xia, B. Y.; Lou, X. W. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J. Am. Chem. Soc. 2015, 137, 5590–5595.

    Article  Google Scholar 

  21. Chen, R.; Wang, H.-Y.; Miao, J. W.; Yang, H. B.; Liu, B. A flexible high-performance oxygen evolution electrode with three-dimensional NiCo2O4 core–shell nanowires. Nano Energy 2015, 11, 333–340.

    Article  Google Scholar 

  22. Lv, X. M.; Zhu, Y. H.; Jiang, H. L.; Yang, X. L.; Liu, Y. Y.; Su, Y. H.; Huang, J. F.; Yao, Y. F.; Li, C. Z. Hollow mesoporous NiCo2O4 nanocages as efficient electrocatalysts for oxygen evolution reaction. Dalton Trans. 2015, 44, 4148–4154.

    Article  Google Scholar 

  23. Liu, X. J.; Chang, Z.; Luo, L.; Xu, T. H.; Lei, X. D.; Liu, J. F.; Sun, X. M. Hierarchical ZnxCo3–x O4 nanoarrays with high activity for electrocatalytic oxygen evolution. Chem. Mater. 2014, 26, 1889–1895.

    Article  Google Scholar 

  24. Wang, Y. C.; Jiang, K.; Zhang, H.; Zhou, T.; Wang, J. W.; Wei, W.; Yang, Z. Q.; Sun, X. H.; Cai, W.-B.; Zheng, G. F. Bio-inspired leaf-mimicking nanosheet/nanotube heterostructure as a highly efficient oxygen evolution catalyst. Adv. Sci. 2015, 2, doi: 10.1002/advs.201500003.

  25. Nai, J. W.; Yin, H. J.; You, T. T.; Zheng, L. R.; Zhang, J.; Wang, P. X.; Jin, Z.; Tian, Y.; Liu, J. Z.; Tang, Z. Y. et al. Efficient electrocatalytic water oxidation by using amorphous Ni–Co double hydroxides nanocages. Adv. Energy Mater. 2015, 5, 1401880.

    Google Scholar 

  26. Ni, B.; Wang, X. Edge overgrowth of spiral bimetallic hydroxides ultrathin-nanosheets for water oxidation. Chem. Sci. 2015, 6, 3572–3576.

    Article  Google Scholar 

  27. Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

    Article  Google Scholar 

  28. Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

    Article  Google Scholar 

  29. Lei, F. C.; Sun, Y. F.; Liu, K. T.; Gao, S.; Liang, L.; Pan, B. C.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136, 6826–6829.

    Article  Google Scholar 

  30. Sun, Y. F.; Sun, Z. H.; Gao, S.; Cheng, H.; Liu, Q. H.; Piao, J. Y.; Yao, T.; Wu, C. Z.; Hu, S. L.; Wei, S. Q. et al. Fabrication of flexible and freestanding zinc chalcogenide single layers. Nat. Commun. 2012, 3, 1057.

    Article  Google Scholar 

  31. Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem. 2015, 127, 7507–7512.

    Article  Google Scholar 

  32. Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

    Article  Google Scholar 

  33. Zhu, J. B.; Bai, L. F.; Sun, Y. F.; Zhang, X. D.; Li, Q. Y.; Cao, B. X.; Yan, W. S.; Xie, Y. Topochemical transformation route to atomically thick Co3O4 nanosheets realizing enhanced lithium storage performance. Nanoscale 2013, 5, 5241–5246.

    Article  Google Scholar 

  34. Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

    Google Scholar 

  35. Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261.

    Article  Google Scholar 

  36. Long, X.; Xiao, S.; Wang, Z. L.; Zheng, X. L.; Yang, S. H. Co intake mediated formation of ultrathin nanosheets of transition metal LDH—An advanced electrocatalyst for oxygen evolution reaction. Chem. Commun. 2015, 51, 1120–1123.

    Article  Google Scholar 

  37. Corma, A.; García, H.; Llabrés i Xamena, F. X. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 2010, 110, 4606–4655.

    Article  Google Scholar 

  38. Férey, G.; Serre, C.; Devic, T.; Maurin, G.; Jobic, H.; Llewellyn, P. L.; De Weireld, G.; Vimont, A.; Daturi, M.; Chang, J.-S. Why hybrid porous solids capture greenhouse gases? Chem. Soc. Rev. 2011, 40, 550–562.

    Article  Google Scholar 

  39. Wang, X.; Zhao, S.; Zhang, Y. B.; Wang, Z.; Feng, J.; Song, S. Y.; Zhang, H. J. CeO2 nanowires self-inserted into porous Co3O4 frameworks as high-performance “noble metal free” hetero-catalysts. Chem. Sci. 2016, 7, 1109–1114.

    Article  Google Scholar 

  40. Song, X.-Z.; Song, S.-Y.; Zhao, S.-N.; Hao, Z.-M.; Zhu, M.; Meng, X.; Wu, L.-L.; Zhang, H.-J. Single-crystal-to-singlecrystal transformation of a europium(III) metal–organic framework producing a multi-responsive luminescent sensor. Adv. Funct. Mater. 2014, 24, 4034–4041.

    Article  Google Scholar 

  41. Kim, M.; Cahill, J. F.; Fei, H. H.; Prather, K. A.; Cohen, S. M. Postsynthetic ligand and cation exchange in robust metal–organic frameworks. J. Am. Chem. Soc. 2012, 134, 18082–18088.

    Article  Google Scholar 

  42. Kim, M.; Cahill, J. F.; Su, Y. X.; Prather, K. A.; Cohen, S. M. Postsynthetic ligand exchange as a route to functionalization of “inert” metal-organic frameworks. Chem. Sci. 2012, 3, 126–130.

    Article  Google Scholar 

  43. He, Y.-P.; Tan, Y.-X.; Zhang, J. Guest inducing fluorescence switching in lanthanide-tris((4-carboxyl)phenylduryl)amine frameworks integrating porosity and flexibility. J. Mater. Chem. C 2014, 2, 4436–4441.

    Article  Google Scholar 

  44. Sun, D. R.; Sun, F. X.; Deng, X. Y.; Li, Z. H. Mixed-metal strategy on metal–organic frameworks (MOFs) for functionalities expansion: Co substitution induces aerobic oxidation of cyclohexene over inactive Ni-MOF-74. Inorg. Chem. 2015, 54, 8639–8643.

    Article  Google Scholar 

  45. Fu, H.-R.; Xu, Z.-X.; Zhang, J. Water-stable metal–organic frameworks for fast and high dichromate trapping via single-crystal-to-single-crystal ion exchange. Chem. Mater. 2015, 27, 205–210.

    Article  Google Scholar 

  46. Liang, H. F.; Meng, F.; Cabán-Acevedo, M.; Li, L. S.; Forticaux, A.; Xiu, L. C.; Wang, Z. C.; Jin, S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 2015, 15, 1421–1427.

    Article  Google Scholar 

  47. Jiang, J.; Zhang, A. L.; Li, L. L.; Ai, L. H. Nickel–cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. J. Power Sources 2015, 278, 445–451.

    Article  Google Scholar 

  48. Manivasakan, P.; Ramasamy, P.; Kim, J. Use of urchin-like NixCo3–x O4 hierarchical nanostructures based on non-precious metals as bifunctional electrocatalysts for anion-exchange membrane alkaline alcohol fuel cells. Nanoscale 2014, 6, 9665–9672.

    Article  Google Scholar 

  49. Prabu, M.; Ketpang, K.; Shanmugam, S. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries. Nanoscale 2014, 6, 3173–3181.

    Article  Google Scholar 

  50. Sayeed, M. A.; Herd, T.; O'Mullane, A. P. Direct electrochemical formation of nanostructured amorphous Co(OH)2 on gold electrodes with enhanced activity for the oxygen evolution reaction. J. Mater. Chem. A 2016, 4, 991–999.

    Article  Google Scholar 

  51. Du, W. M.; Wang, Z. Y.; Zhu, Z. Q.; Hu, S.; Zhu, X. Y.; Shi, Y. F.; Pang, H.; Qian, X. F. Facile synthesis and superior electrochemical performances of CoNi2S4/graphene nanocomposite suitable for supercapacitor electrodes. J. Mater. Chem. A 2014, 2, 9613–9619.

    Article  Google Scholar 

  52. Zhang, H.; Qiao, H.; Wang, H. Y.; Zhou, N.; Chen, J. J.; Tang, Y. G.; Li, J. S.; Huang, C. H. Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery. Nanoscale 2014, 6, 10235–10242.

    Article  Google Scholar 

  53. Li, Y. G.; Hasin, P.; Wu, Y. Y. NixCo3-x O4 nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater. 2010, 22, 1926–1929.

    Article  Google Scholar 

  54. Sun, Y. F.; Gao, S.; Lei, F. C.; Liu, J. W.; Liang, L.; Xie, Y. Atomically-thin non-layered cobalt oxide porous sheets for highly efficient oxygen-evolving electrocatalysts. Chem. Sci. 2014, 5, 3976–3982.

    Article  Google Scholar 

  55. Louie, M. W.; Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

    Article  Google Scholar 

  56. Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

    Article  Google Scholar 

  57. Baird, T.; Campbell, K. C.; Holliman, P. J.; Hoyle, R. W.; Stirling, D.; Williams, B. P.; Morris, M. Characterisation of cobalt-zinc hydroxycarbonates and their products of decomposition. J. Mater. Chem. 1997, 7, 319–330.

    Article  Google Scholar 

  58. Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898.

    Article  Google Scholar 

  59. Huang, L.; Chen, D. C.; Ding, Y.; Feng, S.; Wang, Z. L.; Liu, M. L. Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2013, 13, 3135–3139.

    Article  Google Scholar 

  60. Wei, T.-Y.; Chen, C.-H.; Chien, H.-C.; Lu, S.-Y.; Hu, C.-C. A cost-effective supercapacitor material of ultrahigh specific capacitances: Spinel nickel cobaltite aerogels from an epoxidedriven sol–gel process. Adv. Mater. 2010, 22, 347–351.

    Article  Google Scholar 

  61. Gao, G. X.; Wu, H. B.; Ding, S. J.; Lou, X. W. Preparation of carbon-coated NiCo2O4@SnO2 hetero-nanostructures and their reversible lithium storage properties. Small 2015, 11, 432–436.

    Article  Google Scholar 

  62. Liu, X. H.; Ma, R. Z.; Bando, Y.; Sasaki, T. A general strategy to layered transition-metal hydroxide nanocones: Tuning the composition for high electrochemical performance. Adv. Mater. 2012, 24, 2148–2153.

    Article  Google Scholar 

  63. Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobaltphosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509.

    Article  Google Scholar 

  64. Song, F.; Hu, X. L. Ultrathin cobalt–manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2014, 136, 16481–16484.

    Article  Google Scholar 

  65. Wang, H.-Y.; Hsu, Y.-Y.; Chen, R.; Chan, T.-S.; Chen, H. M.; Liu, B. Ni3+-induced formation of active NiOOH on the spinel Ni–Co oxide surface for efficient oxygen evolution reaction. Adv. Energy Mater. 2015, 5, 1500091.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ding.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, K., Cao, Z., Liu, R. et al. In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction. Nano Res. 9, 1856–1865 (2016). https://doi.org/10.1007/s12274-016-1078-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1078-x

Keywords

Navigation