Skip to main content
Log in

Surface charge transfer doping for two-dimensional semiconductor-based electronic and optoelectronic devices

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Doping of semiconductors, i.e., accurately modulating the charge carrier type and concentration in a controllable manner, is a key technology foundation for modern electronics and optoelectronics. However, the conventional doping technologies widely utilized in silicon industry, such as ion implantation and thermal diffusion, always fail when applied to two-dimensional (2D) materials with atomically-thin nature. Surface charge transfer doping (SCTD) is emerging as an effective and non-destructive doping technique to provide reliable doping capability for 2D materials, in particular 2D semiconductors. Herein, we summarize the recent advances and developments on the SCTD of 2D semiconductors and its application in electronic and optoelectronic devices. The underlying mechanism of STCD processes on 2D semiconductors is briefly introduced. Its impact on tuning the fundamental properties of various 2D systems is highlighted. We particularly emphasize on the SCTD-enabled high-performance 2D functional devices. Finally, the challenges and opportunities for the future development of SCTD are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell, S. A. The Science and Engineering of Microelectronic Fabrication, 2nd ed; Oxford University Press: New York, 2001.

    Google Scholar 

  2. Akasaki, I.; Amano, H.; Kito, M.; Hiramatsu, K. Photoluminescence of Mg-doped p-type GaN and electroluminescence of GaN p-n junction LED. J. Lumin.1991, 48-49, 666–670.

    CAS  Google Scholar 

  3. Alivov, Y. I.; Chukichev, M. V.; Nikitenko, V. A. Green luminescence band of zinc oxide films copper-doped by thermal diffusion. Semiconductors2004, 38, 31–35.

    CAS  Google Scholar 

  4. Koizumi, S.; Watanabe, K.; Hasegawa, M.; Kanda, H. Ultraviolet emission from a diamond pn junction. Science2001, 292, 1899–1901.

    CAS  Google Scholar 

  5. Donnelly, J. P.; Milnes, A. G. The photovoltaic characteristics of p-n Ge-Si and Ge-GaAs heterojunctions. Int. J. Electron.1966, 20, 295–310.

    CAS  Google Scholar 

  6. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science2004, 306, 666–669.

    CAS  Google Scholar 

  7. Schwierz, F. Graphene transistors. Nat. Nanotechnol.2010, 5, 487–496.

    CAS  Google Scholar 

  8. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev.2017, 117, 6225–6331.

    CAS  Google Scholar 

  9. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol.2012, 7, 699–715.

    CAS  Google Scholar 

  10. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater.2017, 2, 17033.

    CAS  Google Scholar 

  11. Hu, Z. H.; Niu, T. C.; Guo, R.; Zhang, J. L.; Lai, M.; He, J.; Wang, L.; Chen, W. Two-dimensional black phosphorus: Its fabrication, functionalization and applications. Nanoscale2018, 10, 21575–21603.

    CAS  Google Scholar 

  12. Wang, B.; Zhong, S. P.; Zhang, Z. B.; Zheng, Z. Q.; Zhang, Y. P.; Zhang, H. Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors. Appl. Mater. Today2019, 15, 115–138.

    Google Scholar 

  13. Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev.2018, 47, 3100–3128.

    CAS  Google Scholar 

  14. Huo, N. J.; Konstantatos, G. Recent progress and future prospects of 2D-based photodetectors. Adv. Mater.2018, 30, 1801164.

    Google Scholar 

  15. Peng, B.; Ang, P. K.; Loh, K. P. Two-dimensional dichalcogenides for light-harvesting applications. Nano Today2015, 10, 128–137.

    CAS  Google Scholar 

  16. Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science2014, 346, 1344–1347.

    CAS  Google Scholar 

  17. Ugeda, M. M.; Pulkin, A.; Tang, S. J.; Ryu, H.; Wu, Q. S.; Zhang, Y.; Wong, D.; Pedramrazi, Z.; Martín-Recio, A.; Chen, Y. et al. Observation of topologically protected states at crystalline phase boundaries in single-layer WSe2. Nat. Commun.2018, 9, 3401.

    Google Scholar 

  18. Schaibley, J. R.; Yu, H. Y.; Clark, G.; Rivera, P.; Ross, J. S.; Seyler, K. L.; Yao, W.; Xu, X. D. Valleytronics in 2D materials. Nat. Rev. Mater.2016, 1, 16055.

    CAS  Google Scholar 

  19. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol.2014, 9, 372–377.

    CAS  Google Scholar 

  20. Li, L. K.; Kim, J.; Jin, C. H.; Ye, G. J.; Qiu, D. Y.; da Jornada, F. H.; Shi, Z. W.; Chen, L.; Zhang, Z. C.; Yang, F. Y. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol.2017, 12, 21–25.

    CAS  Google Scholar 

  21. Li, L. K.; Ye, G. J.; Tran, V.; Fei, R. X.; Chen, G. R.; Wang, H. C.; Wang, J.; Watanabe, K. J.; Taniguchi, T.; Yang, L. et al. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat. Nanotechnol.2015, 10, 608–613.

    CAS  Google Scholar 

  22. Long, G.; Maryenko, D.; Shen, J. Y.; Xu, S. G.; Hou, J. Q.; Wu, Z. F.; Wong, W. K.; Han, T. Y.; Lin, J. X. Z.; Cai, Y. et al. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett.2016, 16, 7768–7773.

    CAS  Google Scholar 

  23. Xu, Y. J.; Shi, X. Y.; Zhang, Y. S.; Zhang, H. T.; Zhang, Q. L.; Huang, Z. L.; Xu, X. F.; Guo, J.; Zhang, H.; Sun, L. T. et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat. Commun.2020, 11, 1330.

    CAS  Google Scholar 

  24. Favron, A.; Gaufrés, E.; Fossard, F.; Phaneuf-L’Heureux, A. L.; Tang, N. Y. W.; Lévesque, P. L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater.2015, 14, 826–832.

    CAS  Google Scholar 

  25. Hu, Z. H.; Li, Q.; Lei, B.; Zhou, Q. H.; Xiang, D.; Lyu, Z. Y.; Hu, F.; Wang, J. Y.; Ren, Y. J.; Guo, R. et al. Water-catalyzed oxidation of few-layer black phosphorous in a dark environment. Angew. Chem., Int. Ed.2017, 56, 9131–9135.

    CAS  Google Scholar 

  26. Han, C.; Hu, Z. H.; Carvalho, A.; Guo, N.; Zhang, J. L.; Hu, F.; Xiang, D.; Wu, J.; Lei, B.; Wang, L. et al. Oxygen induced strong mobility modulation in few-layer black phosphorus. 2D Mater.2017, 4, 021007.

    Google Scholar 

  27. Zhang, J. L.; Zhao, S. T.; Telychko, M.; Sun, S.; Lian, X.; Su, J.; Tadich, A.; Qi, D. C.; Zhuang, J. C.; Zheng, Y. et al. Reversible oxidation of blue phosphorus monolayer on Au(111). Nano Lett.2019, 19, 5340–5346.

    CAS  Google Scholar 

  28. Xu, K.; Yin, L.; Huang, Y.; Shifa, T. A.; Chu, J. W.; Wang, F.; Cheng, R. Q.; Wang, Z. X.; He, J. Synthesis, properties and applications of 2D layered MIIIXVI (M = Ga, In; X= S, Se, Te) materials. Nanoscale2016, 8, 16802–16818.

    CAS  Google Scholar 

  29. Zhou, X.; Zhang, Q.; Gan, L.; Li, H. Q.; Xiong, J.; Zhai, T. Y. Booming development of group IV-VI semiconductors: Fresh blood of 2D family. Adv. Sci.2016, 3, 1600177.

    Google Scholar 

  30. Yang, Z. B.; Hao, J. H. Recent progress in 2D layered III–VI semiconductors and their heterostructures for optoelectronic device applications. Adv. Mater. Technol.2019, 4, 1900108.

    CAS  Google Scholar 

  31. Cai, H.; Gu, Y. Y.; Lin, Y. C.; Yu, Y. L.; Geohegan, D. B.; Xiao, K. Synthesis and emerging properties of 2D layered III-VI metal chalcogenides. Appl. Phys. Rev.2019, 6, 041312.

    Google Scholar 

  32. Hu, Z. Y.; Ding, Y. C.; Hu, X. M.; Zhou, W. H.; Yu, X. C.; Zhang, S. L. Recent progress in 2D group IV–IV monochalcogenides: Synthesis, properties and applications. Nanotechnology2019, 30, 252001.

    CAS  Google Scholar 

  33. Bandurin, D. A.; Tyurnina, A. V.; Yu, G. L.; Mishchenko, A.; Zólyomi, V.; Morozov, S. V.; Kumar, R. K.; Gorbachev, R. V.; Kudrynskyi, Z. R.; Pezzini, S. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol.2017, 12, 223–227.

    CAS  Google Scholar 

  34. Zhao, S. L.; Wang, H.; Zhou, Y.; Liao, L.; Jiang, Y.; Yang, X.; Chen, G. C.; Lin, M.; Wang, Y.; Peng, H. L. et al. Controlled synthesis of single-crystal SnSe nanoplates. Nano Res.2015, 8, 288–295.

    CAS  Google Scholar 

  35. Luo, P.; Zhuge, F. W.; Zhang, Q. F.; Chen, Y. Q.; Lv, L.; Huang, Y.; Li, H. Q.; Zhai, T. Y. Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horiz.2019, 4, 26–51.

    CAS  Google Scholar 

  36. Zhang, K. H.; Robinson, J. Doping of two-dimensional semiconductors: A rapid review and outlook. MRS Adv.2019, 4, 2743–2757.

    CAS  Google Scholar 

  37. Schulman, D. S.; Arnold, A. J.; Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev.2018, 47, 3037–3058.

    CAS  Google Scholar 

  38. Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol.2014, 9, 262–267.

    CAS  Google Scholar 

  39. Buscema, M.; Groenendijk, D. J.; Steele, G. A.; Van Der Zant, H. S. J.; Castellanos-Gomez, A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun.2014, 5, 4651.

    CAS  Google Scholar 

  40. Roy, T.; Tosun, M.; Cao, X.; Fang, H.; Lien, D. H.; Zhao, P. D.; Chen, Y. Z.; Chueh, Y. L.; Guo, J.; Javey, A. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano2015, 9, 2071–2079.

    CAS  Google Scholar 

  41. Chen, W.; Qi, D. C.; Gao, X. Y.; Wee, A. T. S. Surface transfer doping of semiconductors. Prog. Surf. Sci.2009, 84, 279–321.

    CAS  Google Scholar 

  42. Mao, H. Y.; Lu, Y. H.; Lin, J. D.; Zhong, S.; Wee, A. T. S.; Chen, W. Manipulating the electronic and chemical properties of graphene via molecular functionalization. Prog. Surf. Sci.2013, 88, 132–159.

    CAS  Google Scholar 

  43. Zhang, X. J.; Shao, Z. B.; Zhang, X. H.; He, Y. Y.; Jie, J. S. Surface charge transfer doping of low-dimensional nanostructures toward highperformance nanodevices. Adv. Mater.2016, 28, 10409–10442.

    CAS  Google Scholar 

  44. Zhao, Y. D.; Xu, K.; Pan, F.; Zhou, C. J.; Zhou, F. C.; Chai, Y. Doping, contact and interface engineering of two-dimensional layered transition metal dichalcogenides transistors. Adv. Funct. Mater.2017, 27, 1603484.

    Google Scholar 

  45. Kröger, M.; Hamwi, S.; Meyer, J.; Riedl, T.; Kowalsky, W.; Kahn, A. P-type doping of organic wide band gap materials by transition metal oxides: A case-study on molybdenum trioxide. Org. Electron.2009, 10, 932–938.

    Google Scholar 

  46. Meyer, J.; Hamwi, S.; Schmale, S.; Winkler, T.; Johannes, H. H.; Riedl, T.; Kowalsky, W. A strategy towards p-type doping of organic materials with HOMO levels beyond 6 eV using tungsten oxide. J. Mater. Chem.2009, 19, 702–705.

    CAS  Google Scholar 

  47. Lee, J. H.; Leem, D. S.; Kim, J. J. Effect of host organic semiconductors on electrical doping. Org. Electron.2010, 11, 486–489.

    CAS  Google Scholar 

  48. Lin, J. D.; Han, C.; Wang, F.; Wang, R.; Xiang, D.; Qin, S. Q.; Zhang, X. A.; Wang, L.; Zhang, H.; Wee, A. T. S. et al. Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano2014, 8, 5323–5329.

    CAS  Google Scholar 

  49. Xiang, D.; Han, C.; Wu, J.; Zhong, S.; Liu, Y. Y.; Lin, J. D.; Zhang, X. A.; Hu, W. P.; Özyilmaz, B.; Neto, A. H. C. et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun.2015, 6, 6485.

    CAS  Google Scholar 

  50. Xiang, D.; Han, C.; Hu, Z. H.; Lei, B.; Liu, Y. Y.; Wang, L.; Hu, W. P.; Chen, W. Surface transfer doping-induced, high-performance graphene/silicon schottky junction-based, self-powered photodetector. Small2015, 11, 4829–4836.

    CAS  Google Scholar 

  51. Huang, Y. L.; Zheng, Y. J.; Song, Z. B.; Chi, D. Z.; Wee, A. T. S.; Quek, S. Y. The organic-2D transition metal dichalcogenide heterointerface. Chem. Soc. Rev.2018, 47, 3241–3264.

    CAS  Google Scholar 

  52. Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc.2014, 136, 7853–7856.

    CAS  Google Scholar 

  53. Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett.2013, 13, 5944–5948.

    CAS  Google Scholar 

  54. Ji, H. G.; Solís-Fernández, P.; Yoshimura, D.; Maruyama, M.; Endo, T.; Miyata, Y.; Okada, S.; Ago, H. Chemically tuned p- and n-type WSe2 monolayers with high carrier mobility for advanced electronics. Adv. Mater.2019, 31, 1903613.

    CAS  Google Scholar 

  55. de la Rosa, C. J. L.; Nourbakhsh, A.; Heyne, M.; Asselberghs, I.; Huyghebaert, C.; Radu, I.; Heyns, M.; De Gendt, S. Highly efficient and stable MoS2 FETs with reversible n-doping using a dehydrated poly(vinyl-alcohol) coating. Nanoscale2017, 9, 258–265.

    Google Scholar 

  56. Andleeb, S.; Kumar Singh, A.; Eom, J. Chemical doping of MoS2 multilayer by p-toluene sulfonic acid. Sci. Technol. Adv. Mater.2015, 16, 035009.

    Google Scholar 

  57. Sarkar, D.; Xie, X. J.; Kang, J. H.; Zhang, H. J.; Liu, W.; Navarrete, J.; Moskovits, M.; Banerjee, K. Functionalization of transition metal dichalcogenides with metallic nanoparticles: Implications for doping and gas-sensing. Nano Lett.2015, 15, 2852–2862.

    CAS  Google Scholar 

  58. Tan, S. J. R.; Abdelwahab, I.; Ding, Z. J.; Zhao, X. X.; Yang, T. S.; Loke, G. Z. J.; Lin, H.; Verzhbitskiy, I.; Poh, S. M.; Xu, H. et al. Chemical stabilization of 1T’ phase transition metal dichalcogenides with giant optical kerr nonlinearity. J. Am. Chem. Soc.2017, 139, 2504–2511.

    CAS  Google Scholar 

  59. Li, M. J.; Lin, C. Y.; Yang, S. H.; Chang, Y. M.; Chang, J. K.; Yang, F. S.; Zhong, C. R.; Jian, W. B.; Lien, C. H.; Ho, C. H. et al. High mobilities in layered InSe transistors with indium-encapsulation-induced surface charge doping. Adv. Mater.2018, 30, 1803690.

    Google Scholar 

  60. Liu, Y. D.; Cai, Y. Q.; Zhang, G.; Zhang, Y. W.; Ang, K. W. Al-doped black phosphorus p-n homojunction diode for high performance photovoltaic. Adv. Funct. Mater.2017, 27, 1604638.

    Google Scholar 

  61. Koenig, S. P.; Doganov, R. A.; Seixas, L.; Carvalho, A.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Yakovlev, N.; Neto, A. H. C.; Özyilmaz, B. Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett.2016, 16, 2145–2151.

    CAS  Google Scholar 

  62. Luo, W.; Zhu, M. J.; Peng, G.; Zheng, X. M.; Miao, F.; Bai, S. X.; Zhang, X. A.; Qin, S. Q. Carrier modulation of ambipolar few-layer MoTe2 transistors by MgO surface charge transfer doping. Adv. Funct. Mater.2018, 28, 1704539.

    Google Scholar 

  63. Wang, Y. N.; Xiang, D.; Zheng, Y.; Liu, T.; Ye, X.; Gao, J.; Yang, H.; Han, C.; Chen, W. Van der Waals heterostructures with tunable tunneling behavior enabled by MoO3 surface functionalization. Adv. Opt. Mater.2020, 8, 1901867.

    CAS  Google Scholar 

  64. Chuang, S.; Battaglia, C.; Azcatl, A.; McDonnell, S.; Kang, J. S.; Yin, X. T.; Tosun, M.; Kapadia, R.; Fang, H.; Wallace, R. M. et al. MoS2 p-type transistors and diodes enabled by high work function MoO, contacts. Nano Lett.2014, 14, 1337–1342.

    CAS  Google Scholar 

  65. Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; Matthews, T. S.; You, L.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett.2013, 13, 2831–2836.

    CAS  Google Scholar 

  66. Liu, B. L.; Chen, L.; Liu, G.; Abbas, A. N.; Fathi, M.; Zhou, C. W. High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano2014, 8, 5304–5314.

    CAS  Google Scholar 

  67. Abbas, A. N.; Liu, B. L.; Chen, L.; Ma, Y. Q.; Cong, S.; Aroonyadet, N.; Kopf, M.; Nilges, T.; Zhou, C. W. Black phosphorus gas sensors. ACS Nano2015, 9, 5618–5624.

    CAS  Google Scholar 

  68. Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett.2013, 13, 668–673.

    CAS  Google Scholar 

  69. Qu, D. S.; Liu, X. C.; Huang, M.; Lee, C. M.; Ahmed, F.; Kim, H.; Ruoff, R. S.; Hone, J.; Yoo, W. J. Carrier-type modulation and mobility improvement of thin MoTe2. Adv. Mater.2017, 29, 1606433.

    Google Scholar 

  70. Guo, R.; Li, Q.; Zheng, Y.; Lei, B.; Sun, H. C.; Hu, Z. H.; Zhang, J. L.; Wang, L.; Longhi, E.; Barlow, S. et al. Degenerate electron-doping in two-dimensional tungsten diselenide with a dimeric organometallic reductant. Mater. Today2019, 30, 26–33.

    CAS  Google Scholar 

  71. Han, C.; Lin, J. D.; Xiang, D.; Wang, C. C.; Wang, L.; Chen, W. Improving chemical vapor deposition graphene conductivity using molybdenum trioxide: An in-situ field effect transistor study. Appl. Phys. Lett.2013, 103, 263117.

    Google Scholar 

  72. Wu, C. I.; Lin, C. T.; Chen, Y. H.; Chen, M. H.; Lu, Y. J.; Wu, C. C. Electronic structures and electron-injection mechanisms of cesium-carbonate-incorporated cathode structures for organic light-emitting devices. Appl. Phys. Lett.2006, 88, 152104.

    Google Scholar 

  73. Huang, J. S.; Xu, Z.; Yang, Y. Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate. Adv. Funct. Mater.2007, 17, 1966–1973.

    CAS  Google Scholar 

  74. Chen, C. H.; Wu, C. L.; Pu, J.; Chiu, M. H.; Kumar, P.; Takenobu, T.; Li, L. J. Hole mobility enhancement and p-doping in monolayer WSe2 by gold decoration. 2D Mater.2014, 1, 034001.

    CAS  Google Scholar 

  75. Han, C.; Hu, Z. H.; Gomes, L. C.; Bao, Y.; Carvalho, A.; Tan, S. J. R.; Lei, B.; Xiang, D.; Wu, J.; Qi, D. Y. et al. Surface functionalization of black phosphorus via potassium toward high-performance complementary devices. Nano Lett.2017, 17, 4122–4129.

    CAS  Google Scholar 

  76. Li, Z. J.; Qiao, H.; Guo, Z. N.; Ren, X. H.; Huang, Z. Y.; Qi, X.; Dhanabalan, S. C.; Ponraj, J. S.; Zhang, D.; Li, J. Q. et al. High-performance photo-electrochemical photodetector based on liquid-exfoliated few-layered InSe nanosheets with enhanced stability. Adv. Funct. Mater.2018, 28, 1705237.

    Google Scholar 

  77. Liu, Y. D.; Ang, K. W. Monolithically integrated flexible black phosphorus complementary inverter circuits. ACS Nano2017, 11, 7416–7423.

    CAS  Google Scholar 

  78. Deng, B. C.; Tran, V.; Xie, Y. J.; Jiang, H.; Li, C.; Guo, Q. S.; Wang, X. M.; Tian, H.; Koester, S. J.; Wang, H. et al. Efficient electrical control of thin-film black phosphorus bandgap. Nat. Commun.2017, 8, 14474.

    CAS  Google Scholar 

  79. Li, H. M.; Lee, D.; Qu, D. S.; Liu, X. C.; Ryu, J.; Seabaugh, A.; Yoo, W. J. Ultimate thin vertical p-n junction composed of two-dimensional layered molybdenum disulfide. Nat. Commun.2015, 6, 6564.

    CAS  Google Scholar 

  80. Li, Y.; Yang, S. X.; Li, J. B. Modulation of the electronic properties of ultrathin black phosphorus by strain and electrical field. J. Phys. Chem. C2014, 118, 23970–23976.

    CAS  Google Scholar 

  81. Liu, Y. P.; Qiu, Z. Z.; Carvalho, A.; Bao, Y.; Xu, H.; Tan, S. J. R.; Liu, W.; Neto, A. H. C.; Loh, K. P.; Lu, J. Gate-tunable giant Stark effect in few-layer black phosphorus. Nano Lett.2017, 17, 1970–1977.

    CAS  Google Scholar 

  82. Rodin, A. S.; Carvalho, A.; Neto, A. H. C. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett.2014, 112, 176801.

    CAS  Google Scholar 

  83. Zhang, W. J.; Lin, C. T.; Liu, K. K.; Tite, T.; Su, C. Y.; Chang, C. H.; Lee, Y. H.; Chu, C. W.; Wei, K. H.; Kuo, J. L. et al. Opening an electrical band gap of bilayer graphene with molecular doping. ACS Nano2011, 5, 7517–7524.

    CAS  Google Scholar 

  84. Takahashi, T.; Sugawara, K.; Noguchi, E.; Sato, T.; Takahashi, T. Band-gap tuning of monolayer graphene by oxygen adsorption. Carbon2014, 73, 141–145.

    CAS  Google Scholar 

  85. Dey, S.; Matte, H. S. S. R.; Shirodkar, S. N.; Waghmare, U. V.; Rao, C. N. R. Charge-transfer interaction between few-layer MoS2 and tetrathiafulvalene. Chem.—Asian J.2013, 8, 1780–1784.

    CAS  Google Scholar 

  86. Kim, J.; Baik, S. S.; Ryu, S. H.; Sohn, Y.; Park, S.; Park, B. G.; Denlinger, J.; Yi, Y.; Choi, H. J.; Kim, K. S. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science2015, 349, 723–726.

    CAS  Google Scholar 

  87. Qi, D. Y.; Han, C.; Rong, X. M.; Zhang, X. W.; Chhowalla, M.; Wee, A. T. S.; Zhang, W. J. Continuously tuning electronic properties of few-layer molybdenum ditelluride with in situ aluminum modification toward ultrahigh gain complementary inverters. ACS Nano2019, 13, 9464–9472.

    CAS  Google Scholar 

  88. Gong, Y. J.; Yuan, H. T.; Wu, C. L.; Tang, P. Z.; Yang, S. Z.; Yang, A. K.; Li, G. D.; Liu, B. F.; Van De Groep, J.; Brongersma, M. L. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol.2018, 13, 294–299.

    CAS  Google Scholar 

  89. Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev.2015, 44, 2702–2712.

    CAS  Google Scholar 

  90. Ma, Y. Q.; Liu, B. L.; Zhang, A. Y.; Chen, L.; Fathi, M.; Shen, C. F.; Abbas, A. N.; Ge, M. Y.; Mecklenburg, M.; Zhou, C. W. Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices. ACS Nano2015, 9, 7383–7391.

    CAS  Google Scholar 

  91. Nourbakhsh, A.; Zubair, A.; Sajjad, R. N.; Amir, T. K. G.; Chen, W.; Fang, S. A.; Ling, X.; Kong, J.; Dresselhaus, M. S.; Kaxiras, E. et al. MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett.2016, 16, 7798–7806.

    CAS  Google Scholar 

  92. Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science2014, 346, 1344–1347.

    CAS  Google Scholar 

  93. Tang, S. J.; Zhang, C. F.; Wong, D.; Pedramrazi, Z.; Tsai, H. Z.; Jia, C. J.; Moritz, B.; Claassen, M.; Ryu, H.; Kahn, S. et al. Quantum spin Hall state in monolayer 1T’-WTe2. Nat. Phys.2017, 13, 683–687.

    CAS  Google Scholar 

  94. Shirodkar, S. N.; Waghmare, U. V. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett.2014, 112, 157601.

    Google Scholar 

  95. Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D. H.; Sung, H. J.; Kan, M.; Kang, H.; Hwang, J. Y.; Kim, S. W.; Yang, H. J. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys.2015, 11, 482–486.

    CAS  Google Scholar 

  96. Wang, Y.; Xiao, J.; Zhu, H. Y.; Li, Y.; Alsaid, Y.; Fong, K. Y.; Zhou, Y.; Wang, S. Q.; Shi, W.; Wang, Y. et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature2017, 550, 487–491.

    CAS  Google Scholar 

  97. Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol.2014, 9, 391–396.

    CAS  Google Scholar 

  98. Amara, K. K.; Chen, Y. F.; Lin, Y. C.; Kumar, R.; Okunishi, E.; Suenaga, K.; Quek, S. Y.; Eda, G. Dynamic structural evolution of metal-metal bonding network in monolayer WS2. Chem. Mater.2016, 28, 2308–2314.

    CAS  Google Scholar 

  99. Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science2015, 349, 625–628.

    CAS  Google Scholar 

  100. Song, S.; Keum, D. H.; Cho, S.; Perello, D.; Kim, Y.; Lee, Y. H. Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain. Nano Lett.2016, 16, 188–193.

    CAS  Google Scholar 

  101. Lei, B.; Pan, Y. Y.; Hu, Z. H.; Zhang, J. L.; Xiang, D.; Zheng, Y.; Guo, R.; Han, C.; Wang, L. H.; Lu, J. et al. Direct observation of semiconductor-metal phase transition in bilayer tungsten diselenide induced by potassium surface functionalization. ACS Nano2018, 12, 2070–2077.

    CAS  Google Scholar 

  102. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett.2010, 10, 1271–1275.

    CAS  Google Scholar 

  103. Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett.2011, 11, 5111–5116.

    CAS  Google Scholar 

  104. Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R. T.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett.2013, 13, 3447–3454.

    Google Scholar 

  105. Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater.2013, 12, 207–211.

    CAS  Google Scholar 

  106. Peimyoo, N.; Yang, W. H.; Shang, J. Z.; Shen, X. N.; Wang, Y. L.; Yu, T. Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2. ACS Nano2014, 8, 11320–11329.

    CAS  Google Scholar 

  107. Amani, M.; Lien, D. H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S. R.; Addou, R.; Santosh, K. C.; Dubey, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science2015, 350, 1065–1068.

    CAS  Google Scholar 

  108. Li, Z. W.; Ye, R. Q.; Feng, R.; Kang, Y. M.; Zhu, X.; Tour, J. M.; Fang, Z. Y. Graphene quantum dots doping of MoS2 monolayers. Adv. Mater.2015, 27, 5235–5240.

    CAS  Google Scholar 

  109. Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B2012, 85, 161403.

    Google Scholar 

  110. Park, H. Y.; Dugasani, S. R.; Kang, D. H.; Jeon, J.; Jang, S. K.; Lee, S.; Roh, Y.; Park, S. H.; Park, J. H. N- and p-type doping phenomenon by artificial DNA and M-DNA on two-dimensional transition metal dichalcogenides. ACS Nano2014, 8, 11603–11613.

    CAS  Google Scholar 

  111. Li, Y.; Xu, C. Y.; Hu, P. A.; Zhen, L. Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano2013, 7, 7795–7804.

    CAS  Google Scholar 

  112. Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater.2015, 14, 1195–1205.

    CAS  Google Scholar 

  113. Kim, C.; Moon, I.; Lee, D.; Choi, M. S.; Ahmed, F.; Nam, S.; Cho, Y.; Shin, H. J.; Park, S.; Yoo, W. J. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano2017, 11, 1588–1596.

    CAS  Google Scholar 

  114. Fang, H.; Tosun, M.; Seol, G.; Chang, T. C.; Takei, K.; Guo, J.; Javey, A. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett.2013, 13, 1991–1995.

    CAS  Google Scholar 

  115. Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett.2012, 12, 3788–3792.

    CAS  Google Scholar 

  116. Du, Y. C.; Liu, H.; Neal, A. T.; Si, M. W.; Ye, P. D. Molecular doping of multilayer MoS2 field-effect transistors: Reduction in sheet and contact resistances. IEEE Electron Device Lett.2013, 34, 1328–1330.

    CAS  Google Scholar 

  117. Yang, L. M.; Majumdar, K.; Liu, H.; Du, Y. C.; Wu, H.; Hatzistergos, M.; Hung, P. Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett.2014, 14, 6275–6280.

    CAS  Google Scholar 

  118. Khalil, H. M. W.; Khan, M. F.; Eom, J.; Noh, H. Highly stable and tunable chemical doping of multilayer WS2 field effect transistor: Reduction in contact resistance. ACS Appl. Mater. Interfaces2015, 7, 23589–23596.

    CAS  Google Scholar 

  119. Liu, X. C.; Qu, D. S.; Ryu, J.; Ahmed, F.; Yang, Z.; Lee, D.; Yoo, W. J. P-type polar transition of chemically doped multilayer MoS2 transistor. Adv. Mater.2016, 28, 2345–2351.

    CAS  Google Scholar 

  120. Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater.2014, 13, 1128–1134.

    CAS  Google Scholar 

  121. Sun, L. F.; Yan, X. X.; Zheng, J. Y.; Yu, H. D.; Lu, Z. X.; Gao, S. P.; Liu, L.; Pan, X. Q.; Wang, D.; Wang, Z. G. et al. Layer-dependent chemically induced phase transition of two-dimensional MoS2. Nano Lett.2018, 18, 3435–3440.

    CAS  Google Scholar 

  122. Choi, M. S.; Qu, D. S.; Lee, D.; Liu, X. C.; Watanabe, K.; Taniguchi, T.; Yoo, W. J. Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano2014, 8, 9332–9340.

    CAS  Google Scholar 

  123. Tosun, M.; Chuang, S.; Fang, H.; Sachid, A. B.; Hettick, M.; Lin, Y. J.; Zeng, Y. P.; Javey, A. High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano2014, 8, 4948–4953.

    CAS  Google Scholar 

  124. Ke, Y. X.; Qi, D. Y.; Han, C.; Liu, J. D.; Zhu, J. Q.; Xiang, Y. J.; Zhang, W. J. Facile p-doping of few-layer MoTe2 by controllable surface oxidation toward high-performance complementary devices. ACS Appl. Electron. Mater.2020, 2, 920–926.

    CAS  Google Scholar 

  125. Lim, J. Y.; Pezeshki, A.; Oh, S.; Kim, J. S.; Lee, Y. T.; Yu, S.; Hwang, D. K.; Lee, G. H.; Choi, H. J.; Im, S. Homogeneous 2D MoTe2 p-n junctions and CMOS inverters formed by atomic-layer-deposition-induced doping. Adv. Mater.2017, 29, 1701798.

    Google Scholar 

  126. Xu, Y. J.; Yuan, J.; Zhang, K.; Hou, Y.; Sun, Q.; Yao, Y. M.; Li, S. J.; Bao, Q. L.; Zhang, H.; Zhang, Y. G. Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater.2017, 27, 1702211.

    Google Scholar 

  127. Wang, G. C.; Bao, L. H.; Pei, T. F.; Ma, R. S.; Zhang, Y. Y.; Sun, L. L.; Zhang, G. Y.; Yang, H. F.; Li, J. J.; Gu, C. Z. et al. Introduction of interfacial charges to black phosphorus for a family of planar devices. Nano Lett.2016, 16 6870–6878.

    CAS  Google Scholar 

  128. Yu, L. L.; Zubair, A.; Santos, E. J. G.; Zhang, X.; Lin, Y. X.; Zhang, Y. H.; Palacios, T. High-performance WSe2 complementary metal oxide semiconductor technology and integrated circuits. Nano Lett.2015, 15, 4928–4934.

    CAS  Google Scholar 

  129. Lei, B.; Zheng, Y.; Hu, Z. H.; Guo, R.; Xiang, D.; Liu, T.; Wang, Y.; Lai, M.; He, J.; Chen, W. Nondestructive hole doping enabled photocurrent enhancement of layered tungsten diselenide. 2D Mater.2019, 6, 024002.

    CAS  Google Scholar 

  130. Sun, M. X.; Xie, D.; Sun, Y. L.; Li, W. W.; Ren, T. L. Locally hydrazine doped WSe2 pn junction toward high-performance photodetectors. Nanotechnology2018, 29, 015203.

    Google Scholar 

  131. Yu, X. C.; Zhang, S. L.; Zeng, H. B.; Wang, Q. J. Lateral black phosphorene P-N junctions formed via chemical doping for high performance near-infrared photodetector. Nano Energy2016, 25, 34–41.

    CAS  Google Scholar 

  132. Lei, S. D.; Wen, F. F.; Ge, L. H.; Najmaei, S.; George, A.; Gong, Y. J.; Gao, W. L.; Jin, Z. H.; Li, B.; Lou, J. et al. An atomically layered InSe avalanche photodetector. Nano Lett.2015, 15, 3048–3055.

    CAS  Google Scholar 

  133. Yao, J. D.; Zheng, Z. Q.; Yang, G. W. All-layered 2D optoelectronics: A high-performance UV-Vis-NIR broadband SnSe photodetector with Bi2Te3 topological insulator electrodes. Adv. Funct. Mater.2017, 27, 1701823.

    Google Scholar 

  134. Xu, Y. J.; Yuan, J.; Fei, L. F.; Wang, X. L.; Bao, Q. L.; Wang, Y.; Zhang, K.; Zhang, Y. G. Selenium-doped black phosphorus for high-responsivity 2D photodetectors. Small2016, 12, 5000–5007.

    CAS  Google Scholar 

  135. Xie, L.; Guo, L.; Yu, W. Z.; Kang, T. T.; Zheng, R. K.; Zhang, K. Ultrasensitive negative photoresponse in 2D Cr2Ge2Te6 photodetector with light-induced carrier trapping. Nanotechnology2018, 29, 464002.

    Google Scholar 

  136. Guo, W. L.; Dong, Z.; Xu, Y. J.; Liu, C. L.; Wei, D. C.; Zhang, L. B.; Shi, X. Y.; Guo, C.; Xu, H.; Chen, G. et al. Sensitive terahertz detection and imaging driven by the photothermoelectric effect in ultrashort-channel black phosphorus devices. Adv. Sci.2020, 7, 1902699.

    CAS  Google Scholar 

  137. Jo, S. H.; Kang, D. H.; Shim, J.; Jeon, J.; Jeon, M. H.; Yoo, G.; Kim, J.; Lee, J.; Yeom, G. Y.; Lee, S. et al. A High-performance WSe2/h-BN photodetector using a triphenylphosphine (PPh3)-based n-doping technique. Adv. Mater.2016, 28, 4824–4831.

    CAS  Google Scholar 

  138. Chen, W.; Gao, X. Y.; Qi, D. C.; Chen, S.; Chen, Z. K.; Wee, A. T. S. Surface-transfer doping of organic semiconductors using functionalized self-assembled monolayers. Adv. Funct. Mater.2007, 17, 1339–1344.

    CAS  Google Scholar 

  139. Kang, D. H.; Kim, M. S.; Shim, J.; Jeon, J.; Park, H. Y.; Jung, W. S.; Yu, H. Y.; Pang, C. H.; Lee, S.; Park, J. H. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater.2015, 25, 4219–4227.

    CAS  Google Scholar 

  140. Lei, B.; Hu, Z. H.; Xiang, D.; Wang, J. Y.; Eda, G.; Han, C.; Chen, W. Significantly enhanced optoelectronic performance of tungsten diselenide phototransistor via surface functionalization. Nano Res.2017, 10, 1282–1291.

    CAS  Google Scholar 

  141. Sun, J. C.; Wang, Y. Y.; Guo, S. Q.; Wan, B. S.; Dong, L. Q.; Gu, Y. D.; Song, C.; Pan, C. F.; Zhang, Q. H.; Gu, L. et al. Lateral 2D WSe2 p-n homojunction formed by efficient charge-carrier-type modulation for high-performance optoelectronics. Adv. Mater.2020, 32, 1906499.

    CAS  Google Scholar 

  142. Gao, J.; Yang, H.; Mao, H. Y.; Liu, T.; Zheng, Y.; Wang, Y. N.; Xiang, D.; Han, C.; Chen, W. Out-of-plane homojunction enabled high performance SnS2 lateral phototransistor. Adv. Opt. Mater.2020, 8, 1901971.

    CAS  Google Scholar 

  143. Huo, N. J.; Konstantatos, G. Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 pn homojunction. Nat. Commun.2017, 8, 572.

    Google Scholar 

  144. Li, C. L.; Cao, Q.; Wang, F. Z.; Xiao, Y. Q.; Li, Y. B.; Delaunay, J. J.; Zhu, H. W. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev.2018, 47, 4981–5037.

    CAS  Google Scholar 

  145. Wi, S. J.; Kim, H.; Chen, M. K.; Nam, H.; Guo, L. J.; Meyhofer, E.; Liang, X. G. Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping. ACS Nano2014, 8, 5270–5281.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Natural Science Foundation of Jiangsu Province (No. BK20170005), the National Natural Science Foundation of China (No. 21872100), Singapore MOE Grants MOE2019-T2-1-002 and R143-000-A43-114, Fundamental Research Foundation of Shenzhen (Nos. JCYJ20190808152607389 and JCYJ20170817100405375), and Shenzhen Peacock Plan (No. KQTD2016053112042971).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Han or Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zheng, Y., Han, C. et al. Surface charge transfer doping for two-dimensional semiconductor-based electronic and optoelectronic devices. Nano Res. 14, 1682–1697 (2021). https://doi.org/10.1007/s12274-020-2919-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2919-1

Keywords

Navigation