Skip to main content
Log in

Defect-density control of platinum-based nanoframes with high-index facets for enhanced electrochemical properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Structure-engineered platinum-based nanoframes (NFs) at the atomic level can effectively improve the catalytic performance for fuel cells and other heterogeneous catalytic fields. We report herein, a microwave-assisted wet-chemical method for the preparation of platinum-copper-cobalt NFs with tunable defect density and architecture, which exhibit enhanced activity and durability towards the electro-oxidation reactions of methanol (MOR) and formic acid (FAOR). By altering the reduction/capping agents and thus the nucleation/growth kinetics, trimetallic platinum-copper-cobalt hexapod NFs with different density high-index facets are achieved. Especially, the rough hexapod nanoframes (rh-NFs) exhibit excellent specific activities towards MOR and FAOR, 7.25 and 5.20 times higher than those of benchmark Pt/C, respectively, along with prolonged durability. The excellent activities of the rh-NFs are assigned to a synergistic effect, including high density of defects and high-index facets, suitable d-band center, and open-framework structure. This synergistic working mechanism opens up a new way for enhancing their electrocatalytic performances by increasing defect density and high-index facets in open-framework platinum-based NFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc.2011, 133, 4718–4721.

    CAS  Google Scholar 

  2. Gao, D. W.; Li, S. N.; Song, G. L.; Zha, P. F.; Li, C. C.; Wei, Q.; Lv, Y. P.; Chen, G. Z. One-pot synthesis of Pt-Cu bimetallic nanocrystals with different structures and their enhanced electrocatalytic properties. Nano Res.2018, 11, 2612–2624.

    CAS  Google Scholar 

  3. Xu, X. L.; Zhang, X.; Sun, H.; Yang, Y.; Dai, X. P.; Gao, J. S.; Li, X. Y.; Zhang, P. F.; Wang, H. H.; Yu, N. F. et al. Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem., Int. Ed.2014, 126, 12730–12735.

    Google Scholar 

  4. Liao, H. B.; Zhu, J. H.; Hou, Y. L. Synthesis and electrocatalytic properties of PtBi nanoplatelets and PdBi nanowires. Nanoscale2014, 6, 1049–1055.

    CAS  Google Scholar 

  5. Zheng, J.; Cullen, D. A.; Forest, R. V.; Wittkopf, J. A.; Zhuang, Z. B.; Sheng, W. C.; Chen, J. G.; Yan, Y. S. Platinum-ruthenium nanotubes and platinum-ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol. ACS Catal.2015, 5, 1468–1474.

    CAS  Google Scholar 

  6. Koenigsmann, C.; Semple, D. B.; Sutter, E.; Tobierre, S. E.; Wong, S. S. Ambient synthesis of high-quality ruthenium nanowires and the morphology-dependent electrocatalytic performance of platinum-decorated ruthenium nanowires and nanoparticles in the methanol oxidation reaction. ACS Appl. Mater. Interfaces2013, 5, 5518–5530.

    CAS  Google Scholar 

  7. Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G; Zhu X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun.2016, 7, 11850.

    CAS  Google Scholar 

  8. Huang, L.; Zhang, X. P.; Han, Y. J.; Wang, Q. Q.; Fang, Y. X.; Dong, S. J. High-index facets bounded platinum-lead concave nanocubes with enhanced electrocatalytic properties. Chem. Mater.2017, 29, 4557–4562.

    CAS  Google Scholar 

  9. Li, W. Q.; Hu, Z. Y.; Zhang, Z. W.; Wei, P.; Zhang, J. N.; Pu, Z. H.; Zhu, J. W.; He, D. P.; Mu, S. C.; van Tendeloo, G. Nano-single crystal coalesced PtCu nanospheres as robust bifunctional catalyst for hydrogen evolution and oxygen reduction reactions. J. Catal.2019, 375, 164–170.

    CAS  Google Scholar 

  10. Du, H. Y.; Luo, S. P.; Wang, K.; Tang, M.; Sriphathoorat, R.; Jin, Y. S.; Shen, P. K. High-quality and deeply excavated Pt3Co nanocubes as efficient catalysts for liquid fuel electrooxidation. Chem. Mater.2017, 29, 9613–9617.

    CAS  Google Scholar 

  11. Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y. J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc.2018, 140, 1142–1147.

    CAS  Google Scholar 

  12. Ding, J. B.; Bu, L. Z.; Guo, S. J.; Zhao, Z. P.; Zhu, E. B.; Huang, Y.; Huang, X. Q. Morphology and phase controlled construction of Pt-Ni nanostructures for efficient electrocatalysis. Nano Lett.2016, 16, 2762–2767.

    CAS  Google Scholar 

  13. Luo, S. P.; Shen, P. K. Concave platinum-copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis. ACS Nano2017, 11, 11946–11953.

    CAS  Google Scholar 

  14. Xue, S. F.; Deng, W. T.; Yang, F.; Yang, J. L.; Amiinu, I. S.; He, D. P.; Tang, H. L.; Mu, S. C. Hexapod PtRuCu nanocrystalline alloy for highly efficient and stable methanol oxidation. ACS Catal.2018, 8, 7578–7584.

    CAS  Google Scholar 

  15. Tang, M.; Luo, S. P.; Wang, K.; Du, H. Y.; Sriphathoorat, R.; Shen, P. K. Simultaneous formation of trimetallic Pt-Ni-Cu excavated rhombic dodecahedrons with enhanced catalytic performance for the methanol oxidation reaction. Nano Res.2018, 11, 4786–4795.

    CAS  Google Scholar 

  16. Ma, Y. X.; Yin, L. S.; Yang, T.; Huang, Q. L.; He, M. S.; Zhao, H.; Zhang, D. E.; Wang, M. Y.; Tong, Z. W. One-pot synthesis of concave platinum-cobalt nanocrystals and their superior catalytic performances for methanol electrochemical oxidation and oxygen electrochemical reduction. ACS Appl. Mater. Interfaces2017, 9, 36164–36172.

    CAS  Google Scholar 

  17. Luo, M. C.; Sun, Y. J.; Qin, Y. N.; Chen, S. L.; Li, Y. J.; Li, C. J.; Yang, Y.; Wu, D.; Xu, N. Y.; Xing, Y. et al. Surface and near-surface engineering of PtCo nanowires at atomic scale for enhanced electrochemical sensing and catalysis. Chem. Mater.2018, 30, 6660–6667.

    CAS  Google Scholar 

  18. Zhang, N.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. Screw thread-like platinum-copper nanowires bounded with high-index facets for efficient electrocatalysis. Nano Lett.2016, 16, 5037–5043.

    CAS  Google Scholar 

  19. Zhang, T.; Bai, Y.; Sun, Y. Q.; Hang, L. F.; Li, X. Y.; Liu, D. L.; Lyu, X.; Li, C. C.; Cai, W. P.; Li, Y. Laser-irradiation induced synthesis of spongy AuAgPt alloy nanospheres with high-index facets, rich grain boundaries and subtle lattice distortion for enhanced electrocatalytic activity. J. Mater. Chem. A2018, 6, 13735–13742.

    CAS  Google Scholar 

  20. Bai, S. X.; Bu, L. Z.; Shao, Q.; Zhu, X.; Huang, X. Q. Multicomponent Pt-based zigzag nanowires as selectivity controllers for selective hydrogenation reactions. J. Am. Chem. Soc.2018, 140, 8384–8387.

    CAS  Google Scholar 

  21. Luo, S. P.; Tang, M.; Shen, P. K.; Ye, S. Y. Atomic-scale preparation of octopod nanoframes with high-index facets as highly active and stable catalysts. Adv. Mater.2017, 29, DOI: https://doi.org/10.1002/adma.201601687.

  22. Wang, K.; Du, H. Y.; Sriphathoorat, R.; Shen, P. K. Vertex-type engineering of Pt-Cu-Rh heterogeneous nanocages for highly efficient ethanol electrooxidation. Adv. Mater.2018, 30, 1804074.

    Google Scholar 

  23. Luo, M. C.; Sun, Y. J.; Zhang, X.; Qin, Y. N.; Li, M. Q.; Li, Y. J.; Li, C. J.; Yang, Y.; Wang, L.; Gao, P. et al. Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis. Adv. Mater.2018, 30, 1705515.

    Google Scholar 

  24. Qin, Y. C.; Zhang, X.; Dai, X. P.; Sun, H.; Yang, Y.; Li, X. S.; Shi, Q. X.; Gao, D. W.; Wang, H.; Yu, N. F. et al. Graphene oxide-assisted synthesis of Pt-Co alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Small2016, 12, 524–533.

    CAS  Google Scholar 

  25. Nosheen, F.; Zhang, Z. C.; Xiang, G. L.; Xu, B.; Yang, Y.; Saleem, F.; Xu, X. B.; Zhang, J. C.; Wang, X. Three-dimensional hierarchical Pt-Cu superstructures. Nano Res.2015, 8, 832–838.

    CAS  Google Scholar 

  26. Yang, P. P.; Yuan, X. L.; Hu, H. C.; Liu, Y. L.; Zheng, H. W.; Yang, D.; Chen, L.; Cao, M. H.; Xu, Y.; Min, Y. L. et al. Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv. Funct. Mater.2018, 28, 1704774.

    Google Scholar 

  27. Chen, Q. L.; Yang, Y. N.; Cao, Z. M.; Kuang, Q.; Du G. F.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Excavated cubic platinum-tin alloy nanocrystals constructed from ultrathin nanosheets with enhanced electrocatalytic activity. Angew. Chem, Int. Ed.2016, 55, 9021–9025.

    CAS  Google Scholar 

  28. Wang, Y.; Chen, Y. G.; Nan, C. Y.; Li, L. L.; Wang, D. S.; Peng, Q.; Li, Y. D. Phase-transfer interface promoted corrosion from PtNi10 nanoctahedra to Pt4Ni nanoframes. Nano Res.2015, 8, 140–155.

    CAS  Google Scholar 

  29. Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Chen, B.; Zhu, Y. H.; Gong, Y.; Saleem, F.; Xi, S. B.; Du, Y. H.; Borgna, A. et al. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution. Adv. Mater.2018, 30, 1801741.

    Google Scholar 

  30. Zhang, P. F.; Dai, X. P.; Zhang, X.; Chen, Z. K.; Yang, Y.; Sun, H.; Wang, X. B.; Wang, H.; Wang, M. L. et al. One-pot synthesis of ternary Pt-Ni-Cu nanocrystals with high catalytic performance. Chem. Mater.2015, 27, 6402–6410.

    CAS  Google Scholar 

  31. Becknell, N.; Zheng, C.; Chen, C.; Yu, Y.; Yang, P. D. Synthesis of PtCo3 polyhedral nanoparticles and evolution to Pt3Co nanoframes. Surf. Sci.2016, 648, 328–332.

    CAS  Google Scholar 

  32. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science2014, 343, 1339–1344.

    CAS  Google Scholar 

  33. Wang, C. Y.; Zhang, L. H.; Yang, H. Z.; Pan, J. F.; Liu, J. Y.; Dotse, C.; Luan, Y. L.; Gao, R.; Lin, C. K.; Zhang, J. et al. High-indexed Pt3Ni alloy tetrahexahedral nanoframes evolved through preferential CO etching. Nano Lett.2017, 17, 2204–2210.

    CAS  Google Scholar 

  34. Chen, S. P.; Niu, Z. Q.; Xie, C. L.; Gao, M. Y.; Lai, M. L.; Li, M. F.; Yang, P. D. Effects of catalyst processing on the activity and stability of Pt-Ni nanoframe electrocatalysts. ACS Nano2018, 12, 8697–8705.

    CAS  Google Scholar 

  35. Shang, C. S.; Guo, Y. X.; Wang, E. K. Ultrathin nanodendrite surrounded PtRuNi nanoframes as efficient catalysts for methanol electrooxidation. J. Mater. Chem. A2019, 7, 2547–2552.

    CAS  Google Scholar 

  36. Chen, S.; Su, H. Y.; Wang, Y. C.; Wu, W. L.; Zeng, J. Size-controlled synthesis of platinum-copper hierarchical trigonal bipyramid nanoframes. Angew. Chem., Int. Ed.2015, 54, 108–113.

    CAS  Google Scholar 

  37. Hong, X.; Wang, D. S.; Cai, S. F.; Rong, H. P.; Li, Y. D. Single-crystalline octahedral Au-Ag nanoframes. J. Am. Chem. Soc.2012, 134, 18165–18168.

    CAS  Google Scholar 

  38. Huang, L.; Jiang, Z.; Gong, W. H.; Wang, Z.; Shen, P. K. Two-step etching fabrication of tunable ternary rhombic dodecahedral nanoframes for enhanced oxygen reduction electrocatalysis. J. Power Sources2018, 406, 42–49.

    CAS  Google Scholar 

  39. Lyu, L. M.; Kao, Y. C.; Cullen, D. A.; Sneed, B. T.; Chuang, Y. C.; Kuo, C. H. Spiny rhombic dodecahedral CuPt nanoframes with enhanced catalytic performance synthesized from Cu nanocube templates. Chem. Mater.2017, 29, 5681–5692.

    CAS  Google Scholar 

  40. Ding, J. B.; Zhu, X.; Bu, L. Z.; Yao, J. L.; Guo, J.; Guo, S. J.; Huang, X. Q. Highly open rhombic dodecahedral PtCu nanoframes. Chem. Commun.2015, 51, 9722–9725.

    CAS  Google Scholar 

  41. Oh, A.; Sa, Y. J.; Hwang, H.; Baik, H.; Kim, J.; Kim, B.; Joo, S. H.; Lee, K. Rational design of Pt-Ni-Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction. Nanoscale2016, 8, 16379–16386.

    CAS  Google Scholar 

  42. Li, C. Z.; Yuan, Q.; Ni, B.; He, T.; Zhang, S. M.; Long, Y.; Gu, L.; Wang, X. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun.2018, 9, 3702.

    Google Scholar 

  43. Luan, C. L.; Zhou, Q. X.; Wang, Y.; Xiao, Y.; Dai, X. P.; Huang, X. L.; Zhang, X. A general strategy assisted with dual reductants and dual protecting agents for preparing Pt-based alloys with high-index facets and excellent electrocatalytic performance. Small2017, 13, 1702617.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21808079 and 21878121), Natural Science Foundation of Shandong Province (No. ZR2017BB029), China Postdoctoral Science Foundation (No. 2017M610405), International Postdoctoral Exchange Fellowship Program Between Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, OCPC and University of Jinan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yipin Lv, Daowei Gao or Guozhu Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Li, S., Song, L. et al. Defect-density control of platinum-based nanoframes with high-index facets for enhanced electrochemical properties. Nano Res. 12, 2881–2888 (2019). https://doi.org/10.1007/s12274-019-2530-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2530-5

Keywords

Navigation