Skip to main content
Log in

One-step growth of large-area silicon nanowire fabrics for high-performance multifunctional wearable sensors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Silicon nanowire (SiNW) fabrics are of great interest for fabricating high-performance multifunctional wearable sensors. However, it remains a big challenge to fabricate high-quality SiNW fabrics in a simple and efficient manner. Here we report, for the first time, one-step growth of large-area SiNW fabrics for multifunctional wearable sensors, by using a massive metal-assisted chemical vapor deposition (CVD) method. With bulk Sn as a catalyst source, numerous millimeter-long SiNWs grow and naturally interweave with each other, forming SiNW fabrics over 80 cm2 in one experiment. In addition to intrinsic electronic properties of Si materials, the SiNW fabrics also feature high flexibility, good tailorability and light weight, rendering them ideal for fabricating multifunctional wearable sensors. The prototype sensors based on the SiNW fabrics could effectively detect various stimuli including temperature, light, strain and pressure, with outstanding performance among reported multifunctional sensors. We further demonstrate the integration of the prototype sensors onto the body of a robot, enabling its perception to various environmental stimuli. The ability to prepare high-quality SiNW fabrics in a simple and efficient manner will stimulate the development of wearable devices for applications in portable electronics, Internet of Things, health care and robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, S. H.; Xu, J.; Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature2018, 555, 83–88.

    Article  CAS  Google Scholar 

  2. Choi, S.; Han, S. I.; Jung, D.; Hwang, H. J.; Lim, C.; Bae, S.; Park, O. K.; Tschabrunn, C. M.; Lee, M.; Bae, S. Y. et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol.2018, 13, 1048–1056.

    Article  CAS  Google Scholar 

  3. Seyedin, S.; Zhang, P.; Naebe, M.; Qin, S.; Chen, J.; Wang, X. G.; Razal, J. M. Textile strain sensors: A review of the fabrication technologies, performance evaluation and applications. Mater. Horiz.2019, 6, 219–249.

    Article  CAS  Google Scholar 

  4. Wang, C. Y.; Xia, K. L.; Wang, H. M.; Liang, X. P.; Yin, Z.; Zhang, Y. Y. Advanced carbon for flexible and wearable electronics. Adv. Mater.2019, 31, 1801072.

    Article  Google Scholar 

  5. Hu, Y. G.; Zhao, T.; Zhu, P. L.; Zhang, Y.; Liang, X. W.; Sun, R.; Wong, C. P. A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring. Nano Res.2018, 11, 1938–1955.

    Article  Google Scholar 

  6. Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater.2014, 26, 5310–5336.

    Article  CAS  Google Scholar 

  7. Yetisen, A. K.; Qu, H.; Manbachi, A.; Butt, H.; Dokmeci, M. R.; Hinestroza, J. P.; Skorobogatiy, M.; Khademhosseini, A.; Yun, S. H. Nanotechnology in textiles. ACS Nano2016, 10, 3042–3068.

    Article  CAS  Google Scholar 

  8. Li, X. T.; Hu, H. B.; Hua, T.; Xu, B. G.; Jiang, S. X. Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Res.2018, 11, 5799–5811.

    Article  CAS  Google Scholar 

  9. Liu, X.; Tang, C.; Du, X. H.; Xiong, S.; Xi, S. Y.; Liu, Y. F.; Shen, X.; Zheng, Q. B.; Wang, Z. Y.; Wu, Y. et al. A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments. Mater. Horiz.2017, 4, 477–486.

    Article  CAS  Google Scholar 

  10. Zhang, M. C.; Wang, C. Y.; Wang, H. M.; Jian, M. Q.; Hao, X. Y.; Zhang, Y. Y. Carbonized cotton fabric for high-performance wearable strain sensors. Adv. Funct. Mater.2017, 27, 1604795.

    Article  Google Scholar 

  11. Wang, C. Y.; Li, X.; Gao, E. L.; Jian, M. Q.; Xia, K. L.; Wang, Q.; Xu, Z. P.; Ren, T. L.; Zhang, Y. Y. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater.2016, 28, 6640–6648.

    Article  CAS  Google Scholar 

  12. Yang, Z.; Pang, Y.; Han, X. L.; Yang, Y. F.; Ling, J.; Jian, M. Q.; Zhang, Y. Y.; Yang, Y.; Ren, T. L. Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano2018, 12, 9134–9141.

    Article  CAS  Google Scholar 

  13. Liu, M. M.; Pu, X.; Jiang, C. Y.; Liu, T.; Huang, X.; Chen, L. B.; Du, C. H.; Sun, J. M.; Hu, W. G.; Wang, Z. L. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater.2017, 29, 1703700

    Article  Google Scholar 

  14. Someya, T.; Kato, Y.; Sekitani, T.; Iba, S.; Noguchi, Y.; Murase, Y.; Kawaguchi, H.; Sakurai, T. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. USA2005, 102, 12321–12325.

    Article  CAS  Google Scholar 

  15. Hua, Q. L.; Sun, J. L.; Liu, H. T.; Bao, R. R.; Yu, R. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun.2018, 9, 244.

    Article  Google Scholar 

  16. Hsu, P. C.; Liu, X. G.; Liu, C.; Xie, X.; Lee, H. R.; Welch, A. J.; Zhao, T.; Cui, Y. Personal thermal management by metallic nanowire-coated textile. Nano Lett.2015, 15, 365–371.

    Article  CAS  Google Scholar 

  17. Liao, X. Q.; Liao, Q. L.; Zhang, Z.; Yan, X. Q.; Liang, Q. J.; Wang, Q. Y.; Li, M. H.; Zhang, Y. A highly stretchable ZnO@fiber-based multifunctional nanosensor for strain/temperature/UV detection. Adv. Funct. Mater.2016, 26, 3074–3081.

    Article  CAS  Google Scholar 

  18. Xiao, P.; Mao, J.; Ding, K.; Luo, W. J.; Hu, W. D.; Zhang, X. J.; Zhang, X. H.; Jie, J. S. Solution-processed 3D RGO–MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection. Adv. Mater.2018, 30, 1801729.

    Article  Google Scholar 

  19. Hosticka, B. J.; Brockherde, W.; Hammerschmidt, D. Silicon sensor systems. In Smart Sensor Interfaces. Huijsing, J. H.; Meijer, G. C. M; Springer: Boston, MA, 1997; pp 99–111.

    Chapter  Google Scholar 

  20. Hull, R. Properties of Crystalline Silicon; INSPEC, the Institution of Electrical Engineers: London, 1999.

    Google Scholar 

  21. Chockla, A. M.; Harris, J. T.; Akhavan, V. A.; Bogart, T. D.; Holmberg, V. C.; Steinhagen, C.; Mullins, C. B.; Stevenson, K. J.; Korgel, B. A. Silicon nanowire fabric as a lithium ion battery electrode material. J. Am. Chem. Soc.2011, 133, 20914–20921.

    Article  CAS  Google Scholar 

  22. Xu, Z.; Sun, H. Y.; Zhao, X. L.; Gao, C. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater.2013, 25, 188–193.

    Article  CAS  Google Scholar 

  23. Koziol, K.; Vilatela, J.; Moisala, A.; Motta, M.; Cunniff, P.; Sennett, M.; Windle, A. High-performance carbon nanotube fiber. Science2007, 318, 1892–1895.

    Article  CAS  Google Scholar 

  24. Heo, K.; Cho, E.; Yang, J. E.; Kim, M. H.; Lee, M.; Lee, B. Y.; Kwon, S. G.; Lee, M. S.; Jo, M. H.; Choi, H. J. et al. Large-scale assembly of silicon nanowire network-based devices using conventional microfabrication facilities. Nano Lett.2008, 8, 4523–4527.

    Article  CAS  Google Scholar 

  25. Wang, H.; Wang, J. T.; Cao, Z. X.; Zhang, W. J.; Lee, C. S.; Lee, S. T.; Zhang, X. H. A surface curvature oscillation model for vapour–liquid–solid growth of periodic one-dimensional nanostructures. Nat. Commun.2015, 6, 6412.

    Article  CAS  Google Scholar 

  26. Wang, H.; Zhang, X. H.; Meng, X. M.; Zhou, S. M.; Wu, S. K.; Shi, W. S.; Lee, S. Bulk preparation of Si-SiOx hierarchical structures: high-density radially oriented amorphous silica nanowires on a single-crystal silicon nanocore. Angew. Chem., Int. Ed.2005, 44, 6934–6937.

    Article  CAS  Google Scholar 

  27. Zhang, B. C.; Wang, H.; He, L.; Zheng, C. J.; Jie, J. S.; Lifshitz, Y.; Lee, S. T.; Zhang, X. H. Centimeter-long single-crystalline Si nanowires. Nano Lett.2017, 17, 7323–7329.

    Article  CAS  Google Scholar 

  28. Moutanabbir, O.; Isheim, D.; Blumtritt, H.; Senz, S.; Pippel, E.; Seidman, D. N. Colossal injection of catalyst atoms into silicon nanowires. Nature2013, 496, 78–82.

    Article  CAS  Google Scholar 

  29. Allen, J. E.; Hemesath, E. R.; Perea, D. E.; Lensch-Falk, J. L.; Li, Z. Y.; Yin, F.; Gass, M. H.; Wang, P.; Bleloch, A. L.; Palmer, R. E. et al. High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol.2008, 3, 168–173.

    Article  CAS  Google Scholar 

  30. Norton, P.; Brandt, J. Temperature coefficient of resistance for p- and n-type silicon. Solid-State Electron.1978, 21, 969–974.

    Article  CAS  Google Scholar 

  31. Kim, J.; Lee, M.; Shim, H. J.; Ghaffari, R.; Cho, H. R.; Son, D.; Jung, Y. H.; Soh, M.; Choi, C.; Jung, S. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun.2014, 5, 5747.

    Article  CAS  Google Scholar 

  32. Wu, M. H.; Liu, K. H.; Wang, W. L.; Sui, Y.; Bai, X. D.; Wang, E. G. Ultralong aligned single-walled carbon nanotubes on flexible fluorphlogopite mica for strain sensors. Nano Res.2012, 5, 443–449.

    Article  CAS  Google Scholar 

  33. Milne, J. S.; Rowe, A. C. H.; Arscott, S.; Renner, C. Giant piezoresistance effects in silicon nanowires and microwires. Phys. Rev. Lett.2010, 105, 226802.

    Article  CAS  Google Scholar 

  34. Li, R. Y.; Si, Y.; Zhu, Z. J.; Guo, Y. J.; Zhang, Y. J.; Pan, N.; Sun, G.; Pan, T. R. Supercapacitive iontronic nanofabric sensing. Adv. Mater.2017, 29, 1700253.

    Article  Google Scholar 

  35. Ge, J.; Sun, L.; Zhang, F. R.; Zhang, Y.; Shi, L. A.; Zhao, H. Y.; Zhu, H. W.; Jiang, H. L.; Yu, S. H. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties. Adv. Mater.2016, 28, 722–728.

    Article  CAS  Google Scholar 

  36. Kim, S. J.; Song, W.; Yi, Y.; Min, B. K.; Mondal, S.; An, K. S.; Choi, C. G. High durability and waterproofing rGO/SWCNT-fabric-based multifunctional sensors for human-motion detection. ACS Appl. Mater. Interfaces2018, 10, 3921–3928.

    Article  CAS  Google Scholar 

  37. Ho, D. H.; Sun, Q. J.; Kim, S. Y.; Han, J. T.; Kim, D. H.; Cho, J. H. Stretchable and multimodal all graphene electronic skin. Adv. Mater.2016, 28, 2601–2608.

    Article  CAS  Google Scholar 

  38. Yao, S. S.; Zhu, Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale2014, 6, 2345–2352.

    Article  CAS  Google Scholar 

  39. Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. A. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol.2011, 6, 788–792.

    Article  CAS  Google Scholar 

  40. Park, J.; Kim, M.; Lee, Y.; Lee, H. S.; Ko, H. Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv.2015, 1, e1500661.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Research Plan of the National Natural Science Foundation of China (No. 91833303), the Foundation for Innovation Research Groups of the National Natural Science Foundation of China (No. 51821002), the National Natural Science Foundation of China (Nos. 51672180 and 51802208), the Natural Science Foundation of Jiangsu Province (No. BK20160309), Postdoctoral Research Foundation of China (Nos. 2016M601880 and 2017T100396), Collaborative Innovation Center of Suzhou Nano Science and Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the 111 Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Sheng Jie, Le He or Xiao-Hong Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, BC., Jie, JS., Shao, ZB. et al. One-step growth of large-area silicon nanowire fabrics for high-performance multifunctional wearable sensors. Nano Res. 12, 2723–2728 (2019). https://doi.org/10.1007/s12274-019-2505-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2505-6

Keywords

Navigation