Skip to main content
Log in

Silk Fibroin-Based Wearable All-Fiber Multifunctional Sensor for Smart Clothing

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Wearable sensing technology enables the interaction between the physical world and the digital world, as takes an irreplaceable role in development of the Internet of Things (IoT), and artificial intelligence (AI). However, increasing requirements posed by rapid development of wearable electronic information technology bring about many for wearable sensing technology, such as the demands for ultrahigh flexibility, air permeability, excellent biocompatibility, and multifunctional integration. Herein, we propose a wearable all-fiber multifunctional sensor (AFMS) based on a biocompatible material, i.e., silk fibroin. A simple two-layer configuration of a silk fiber film and an interdigital Ag nanowires (AgNWs) electrode was designed to construct the AFMS, in which silk fibroin simultaneously serves as a fundamental supporting component and a functional sensing component. Electrospinning and spray coating technologies were introduced to process the silk fiber film and the AgNWs electrode. The all-fiber configuration allows AFMS to possess ultrahigh flexibility and good air permeability, and silk fibroin enables the AFMS to have excellent biocompatibility. More importantly, benefiting from the all-fiber structure and the environmentally sensitive dielectric property of silk fibroin, the AFMS presented multiple sensing characteristics, including pressure sensing, temperature sensing, and humidity sensing. Among them, the pressure sensing function reached a high sensitivity of 2.27 pF/kPa (7.5%/kPa) and a remarkable resolution of ~ 26 Pa in the low pressure range. Additionally, the outstanding mechanical reliability and sensing stability of AFMS were proven by a systematic experiment. In addition, the AFMS was successfully applied for smart mask for breathing monitoring and a smart glove for bending angle recognition of finger joints. Multiple sensing characteristics combined with prominent fundamental features enable the AFMS tremendous potential in the smart sensing field, e.g., smart clothing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Park YG, Lee S, Park JU. Recent progress in wireless sensors for wearable electronics. Sensors 2019;19:4535.

    Article  Google Scholar 

  2. Li S, Xu LD, Zhao S. The internet of things: a survey. Inf Syst Front 2014;17:243.

    Article  CAS  Google Scholar 

  3. Shi Q, Dong B, He T, Sun Z, Zhu J, Zhang Z, Lee C. Progress in wearable electronics/photonics-moving toward the era of artificial intelligence and internet of things. InfoMat. 2020;2:1131.

    Article  Google Scholar 

  4. Liu JL, Chen QY, Liu Q, Zhao BH, Ling SJ, Yao JR, Shao ZZ, Chen X. Intelligent silk fibroin ionotronic skin for temperature sensing. Adv Materials Technol. 2020;5:2000430.

    Article  CAS  Google Scholar 

  5. Wu RH, Ma LY, Hou C, Meng ZH, Guo WX, Yu WD, Yu R, Hu F, Liu XY. Silk composite electronic textile sensor for high space precision 2D combo temperature-pressure sensing. Small 2019;15:1901558.

    Article  Google Scholar 

  6. Lian YL, Yu H, Wang MY, Yang XN, Li Z, Yang F, Wang Y, Tai HL, Liao YL, Wu JY, Wang XR, Jiang YD, Tao GM. A multifunctional wearable E-textile via integrated nanowire-coated fabrics. J Materials Chem C. 2020;8:8399.

    Article  CAS  Google Scholar 

  7. Zang YP, Zhang FJ, Di CA, Zhu DB. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater Horiz 2015;2:140.

    Article  CAS  Google Scholar 

  8. Li JZ, Liu X, Sun H, Wang LM, Zhang JQ, Deng L, Ma TH. An optical fiber sensor coated with electrospinning polyvinyl alcohol/carbon nanotubes composite film. Sensors 2020;20:6966.

    Article  Google Scholar 

  9. Li BT, Xiao G, Liu F, Qiao Y, Li CM, Lu ZS. A flexible humidity sensor based on silk fabrics for human respiration monitoring. J Materials Chem C. 2018;6:4549.

    Article  CAS  Google Scholar 

  10. Chen T, Wei PL, Chen GY, Liu HM, Mugaanire IT, Hou K, Zhu MF. Heterogeneous structured tough conductive gel fibres for stable and high-performance wearable strain sensors. J Materials Chem A. 2021;9:12265.

    Article  CAS  Google Scholar 

  11. Wang CY, Li X, Gao EL, Jian MQ, Xia KL, Wang Q, Xu ZP, Ren TL, Zhang YY. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater 2016;28:6640.

    Article  CAS  Google Scholar 

  12. Xiao G, He J, Chen XD, Qiao Y, Wang F, Xia QY, Yu L, Lu ZS. A wearable, cotton thread/paper-based microfluidic device coupled with smartphone for sweat glucose sensing. Cellulose 2019;26:4553.

    Article  CAS  Google Scholar 

  13. Wang HB, Song Y, Guo H, Wan J, Miao LM, Xu C, Ren ZY, Chen XX, Zhang HX. A three-electrode multi-module sensor for accurate bodily-kinesthetic monitoring. Nano Energy 2020;68:04316.

    Google Scholar 

  14. Lu DS, Zheng ZZ, Guo SZ, Wang C, Kaplan DL, Wang XQ. Binding Quantum Dots to Silk Biomaterials for Optical Sensing. Journal of Sensors. 2015; 2015: 819373.

  15. Liu X, Chen G, Bao J, Xu X. General preparation and shaping of multifunctional nanowire aerogels for pressure/gas/photo-sensing. Adv Fiber Materials. 2021.

  16. Zhou LS, Shen FP, Tian XK, Wang DH, Zhang T, Chen W. Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity. Nanoscale 2013;5:1564.

    Article  CAS  Google Scholar 

  17. Sun L, Huang H, Ding Q, Guo Y, Sun W, Wu Z, Qin M, Guan Q, You Z. Highly transparent, stretchable, and self-healable ionogel for multifunctional sensors, triboelectric nanogenerator, and wearable fibrous electronics. Adv Fiber Materials., 2021;1.

  18. Wang A, Wang YF, Zhang B, Wan KN, Zhu JX, Xu JS, Zhang C, Liu TX. Hydrogen-bonded network enables semi-interpenetrating ionic conductive hydrogels with high stretchability and excellent fatigue resistance for capacitive/resistive bimodal sensors. Chem Eng J. 2021; 411: 128506.

  19. Wen DL, Deng HT, Liu X, Li GK, Zhang XR, Zhang XS. Wearable multi-sensing double-chain thermoelectric generator. Microsyst Nanoeng 2020;6:68.

    Article  Google Scholar 

  20. Cheng XL, Xue X, Ma Y, Han MD, Zhang W, Xu ZY, Zhang H, Zhang HX. Implantable and self-powered blood pressure monitoring based on a piezoelectric thinfilm: Simulated, in vitro and in vivo studies. Nano Energy 2016;22:453.

    Article  CAS  Google Scholar 

  21. Wen DL, Liu X, Deng HT, Sun DH, Qian HY, Brugger J, Zhang XS. Printed silk-fibroin-based triboelectric nanogenerators for multi-functional wearable sensing. Nano Energy. 2019; 66: 104123.

  22. Deng HT, Zhang XR, Wang ZY, Wen DL, Ba YY, Kim B, Han MD, Zhang HX, Zhang XS. Super-stretchable multi-sensing triboelectric nanogenerator based on liquid conductive composite. Nano Energy. 2021; 83: 105823.

  23. Liu R, Li JM, Li M, Zhang QH, Shi GY, Li YG, Hou CY, Wang HZ. MXene-coated air-permeable pressure-sensing fabric for smart wear. ACS Appl Mater Interfaces 2020;12:46446.

    Article  CAS  Google Scholar 

  24. He FL, You XY, Gong H, Yang Y, Bai T, Wang WG, Guo WX, Liu XY, Ye MD. Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators. ACS Appl Mater Interfaces 2020;12:6442.

    Article  CAS  Google Scholar 

  25. Xiao G, He J, Qiao Y, Wang F, Xia Q, Wang X, Yu L, Lu Z, Li CM. Facile and low-cost fabrication of a thread/paper-based wearable system for simultaneous detection of lactate and PH in human sweat. Adv Fiber Materials. 2020;2:265.

    Article  CAS  Google Scholar 

  26. Han ZY, Li HF, Xiao JL, Song HL, Lo B, Cai SS, Chen Y, Ma YJ, Feng X. Ultralow-cost, highly sensitive, and flexible pressure sensors based on carbon black and airlaid paper for wearable electronics. ACS Appl Mater Interfaces 2019;11:33370.

    Article  CAS  Google Scholar 

  27. Wang CY, Xia KL, Zhang YY, Kaplan DL. Silk-based advanced materials for soft electronics. Acc Chem Res 2019;52:2916.

    Article  CAS  Google Scholar 

  28. Shi Q, Sun J, Hou C, Li Y, Zhang Q, Wang H. Advanced functional fiber and smart textile. Adv Fiber Materials. 2019;1:3.

    Article  Google Scholar 

  29. Yang L, Liu H, Ding S, Wu J, Zhang Y, Wang Z, Wei L, Tian M, Tao G. Superabsorbent fibers for comfortable disposable medical protective clothing. Adv Fiber Materials. 2020;2:140.

    Article  CAS  Google Scholar 

  30. Ma WJ, Zhang Y, Pan SW, Cheng YH, Shao ZY, Xiang HX, Chen GY, Zhu LP, Weng W, Bai H, Zhu MF. Smart fibers for energy conversion and storage. Chem Soc Rev 2021;50:7009.

    Article  CAS  Google Scholar 

  31. Zhou CY, Wang J, Zhu XB, Chen K, Ouyang Y, Wu Y, Miao YE, Liu TX. A dual-functional poly(vinyl alcohol)/poly(lithium acrylate) composite nanofiber separator for ionic shielding of polysulfides enables high-rate and ultra-stable Li-S batteries. Nano Res 2021;14:1541.

    Article  CAS  Google Scholar 

  32. Guo YB, Zhang XS, Wang Y, Gong W, Zhang QH, Wang HZ, Brugger J. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy 2018;48:152.

    Article  CAS  Google Scholar 

  33. Stanley S, Ghiladi R. Photosensitizer-Embedded polyacrylonitrile nanofibers as an antimicrobial non-woven textile. Abstr Pap Am Chem Soc 2017;6:77.

    Google Scholar 

  34. Wen DL, Sun DH, Huang P, Huang W, Su M, Wang Y, Han MD, Kim B, Brugger J, Zhang HX, Zhang XS. Recent progress in silk fibroin-based flexible electronics. Microsyst Nanoeng 2021;7:35.

    Article  CAS  Google Scholar 

  35. Xie XS, Zheng ZZ, Wang XQ, Kaplan DL. Low-density silk nanofibrous aerogels: fabrication and applications in air filtration and oil/water purification. ACS Nano 2021;15:1048.

    Article  CAS  Google Scholar 

  36. Zhang XS, Brugger J, Kim B. A silk-fibroin-based transparent triboelectric generator suitable for autonomous sensor network. Nano Energy 2016;20:37.

    Article  Google Scholar 

  37. Joseph J, Singh SG, Vanjari SRK. Piezoelectric micromachined ultrasonic transducer using silk piezoelectric thin film. IEEE Electron Device Lett 2018;39:749.

    Article  CAS  Google Scholar 

  38. Yang MY, He W, Shuai YJ, Min SJ, Zhu LJ. Nucleation of hydroxyapatite crystals by self-assembled Bombyx mori silk fibroin. J Polymer Sci Part B-Polymer Phys. 2013;51:742.

    Article  CAS  Google Scholar 

  39. Li XF, You RC, Luo ZW, Chen G, Li MZ. Silk fibroin scaffolds with a micro-/nano-fibrous architecture for dermal regeneration. J Materials Chem B. 2016;4:2903.

    Article  CAS  Google Scholar 

  40. Liu ZX, Wu BH, Zhu B, Chen ZG, Zhu MF, Liu XG. Continuously producing watersteam and concentrated brine from seawater by hanging photothermal fabrics under sunlight. Adv Func Mater 2019;29:1905485.

    Article  CAS  Google Scholar 

  41. Qin N, Zhang SQ, Jiang JJ, Gilbert Corder S, Qian ZG, Zhou ZT, Lee W, Liu KY, Wang XH, Li XX, Shi ZF, Mao Y, Bechtel HA, Martin MC, Xia XX, Marelli B, Kaplan DL, Omenetto FG, Liu MK, Tao TH. Nanoscale probing of electron-regulated structural transitions in silk proteins by near-field IR imaging and nano-spectroscopy. Nat Commun 2016;7:13079.

    Article  CAS  Google Scholar 

  42. Zhang XY, Wang L, Lu Q, Kaplan DL. Mass Production of Biocompatible Graphene Using Silk Nanofibers. ACS Appl Mater Interfaces 2018;10:22924.

    Article  CAS  Google Scholar 

  43. Ranjana R, Parushuram N, Harisha KS, Asha S, Narayana B, Mahendra M, Sangappa Y. Fabrication and characterization of conductive silk fibroin-gold nanocomposite films. J Materials Sci-Materials Electron. 2020;31:249.

    Article  CAS  Google Scholar 

  44. Um IC, Kim TH, Kweon HY, Ki CS, Park YH. A comparative study on the dielectric and dynamic mechanical relaxation behavior of the regenerated silk fibroin films. Macromol Res 2009;17:785.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 62074029, No. 61804023, No. 61971108), the Key R&D Program of Sichuan Province (No. 2020ZHCG0038), the Sichuan Science and Technology Program (No. 2019YJ0198, No. 2020YJ0015), and the Fundamental Research Funds for the Central Universities (No. ZYGX2019Z002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Sheng Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, DL., Pang, YX., Huang, P. et al. Silk Fibroin-Based Wearable All-Fiber Multifunctional Sensor for Smart Clothing. Adv. Fiber Mater. 4, 873–884 (2022). https://doi.org/10.1007/s42765-022-00150-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00150-x

Keywords

Navigation