Skip to main content
Log in

Ni-based cathode materials for Na-ion batteries

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Na-ion batteries (NIBs) have attracted significant attention owing to Na being an abundant resource that is uniformly distributed in the Earth’s crust. Several 3d transition metal (TM) ions have been thoroughly investigated as charge compensators in single or multiple composition systems to enhance the electrochemical performance of cathodes for the practical applications. In this review, the composition-structure-property relationship of Ni-based cathodes has been reviewed as a design perspective for NIB’s cathodes. The typical Ni-based cathode materials have been systematically summarized and comparatively analyzed, and it is demonstrated that Ni ions can be used to provide charge compensation. Moreover, Ni-based cathodes present high reversible capacity owing to the multi-electron redox reactions and suitable redox potential of Ni-ions redox. However, considering the abundance, cost, and hygroscopic properties of Ni element, the content of 0.15–0.35 per formula can be optimal for enhancing the performance of cathodes. Lastly, further perspectives on designing Ni-containing cathodes, including Ni-rich layered cathodes, have been discussed, which could promote the practical applications of NIBs for grid-scale energy storage in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Y. M.; Lu, Y. X.; Zhao, C. L.; Hu, Y. S.; Titirici, M. M.; Li, H.; Huang, X. J.; Chen, L. Q. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 2017, 7, 130–151.

    Google Scholar 

  2. Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614.

    Google Scholar 

  3. Wu, F. X.; Zhao, C. L.; Chen, S. Q.; Lu, Y. X.; Hou, Y. L.; Hu, Y. S.; Maier, J.; Yu, Y. Multi-electron reaction materials for sodium-based batteries. Mater. Today 2018, 21, 960–973.

    Google Scholar 

  4. Wang, Q.; Zhao, C. L.; Lu, Y. X.; Li, Y. M.; Zheng, Y. H.; Qi, Y. R.; Rong, X. H.; Jiang, L. W.; Qi, X. G.; Shao, Y. J. et al. Advanced nanostructured anode materials for sodium-ion batteries. Small 2017, 13, 1701835.

    Google Scholar 

  5. Zhao, C. L.; Liu, L. L.; Qi, X. G.; Lu, Y. X.; Wu, F. X.; Zhao, J. M.; Yu, Y.; Hu, Y. S.; Chen, L. Q. Solid-state sodium batteries. Adv. Energy Mater. 2018, 8, 1703012.

    Google Scholar 

  6. Zhao, C. L.; Lu, Y. X.; Li, Y. M.; Jiang, L. W.; Rong, X. H.; Hu, Y. S.; Li, H.; Chen, L. Q. Novel methods for sodium-ion battery materials. Small Methods 2017, 1, 1600063.

    Google Scholar 

  7. Zhao, C. L.; Lu, Y. X.; Yue, J. M.; Pan, D.; Qi, Y. R.; Hu, Y. S.; Chen, L. Q. Advanced Na metal anodes. J. Energy Chem. 2018, 27, 1584–1596.

    Google Scholar 

  8. Han, M. H.; Gonzalo, E.; Singh, G.; Rojo, T. A comprehensive review of sodium layered oxides: Powerful cathodes for Na-ion batteries. Energy Environ. Sci. 2015, 8, 81–102.

    Google Scholar 

  9. Senthilkumar, B.; Murugesan, C.; Sharma, L.; Lochab, S.; Barpanda, P. An overview of mixed polyanionic cathode materials for sodium-ion batteries. Small Methods 2019, 3, 1800253.

    Google Scholar 

  10. Mu, L. Q.; Xu, S. Y.; Li, Y. M.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Adv. Mater. 2015, 27, 6928–6933.

    Google Scholar 

  11. Zhao, C. L.; Wang, Q. D.; Lu, Y. X.; Hu, Y. S.; Li, B. H.; Chen, L. Q. Review on anionic redox for high-capacity lithium- and sodium-ion batteries. J. Phys. D: Appl. Phys. 2017, 50, 183001.

    Google Scholar 

  12. Assat, G.; Tarascon, J. M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 2018, 3, 373–386.

    Google Scholar 

  13. Xu, J.; Sun, M. L.; Qiao, R. M.; Renfrew, S. E.; Ma, L.; Wu, T. P.; Hwang, S.; Nordlund, D.; Su, D.; Amine, K. et al. Elucidating anionic oxygen activity in lithium-rich layered oxides. Nat. Commun. 2018, 9, 947.

    Google Scholar 

  14. Zhao, C. L.; Wang, Q. D.; Lu, Y. X.; Jiang, L. W.; Liu, L. L.; Yu, X. Q.; Chen, L. Q.; Li, B. H.; Hu, Y. S. Decreasing transition metal triggered oxygen redox activity in Na-deficient oxides. Energy Storage Mater., in press, DOI: https://doi.org/10.1016/j.ensm.2018.10.025.

  15. Wang, Q. D.; Yang, W.; Kang, F. Y.; Li, B. H. Na2Mn3+0.3Mn4+ 2.7O6.85: A cathode with simultaneous cationic and anionic redox in Na-ion battery. Energy Storage Mater. 2018, 14, 361–366.

    Google Scholar 

  16. Clarke, S. J.; Fowkes, A. J.; Harrison, A.; Ibberson, R. M.; Rosseinsky, M. J. Synthesis, structure, and magnetic properties of NaTiO2. Chem. Mater. 1998, 10, 372–384.

    Google Scholar 

  17. Maazaz, A.; Delmas, C.; Hagenmuller, P. A study of the NaxTiO2 system by electrochemical deintercalation. J. Inclusion Phenom. 1983, 1, 45–51.

    Google Scholar 

  18. Wu, D.; Li, X.; Xu, B.; Twu, N.; Liu, L.; Ceder, G. NaTiO2: A layered anode material for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 195–202.

    Google Scholar 

  19. Delmas, C.; Fouassier, C.; Hagenmuller, P. Structural classification and properties of the layered oxides. Phys. B+C 1980, 99, 81–85.

    Google Scholar 

  20. Guo, S. H.; Yi, J.; Sun, Y.; Zhou, H. S. Recent advances in titanium-based electrode materials for stationary sodium-ion batteries. Energy Environ. Sci. 2016, 9, 2978–3006.

    Google Scholar 

  21. Zhao, C. L.; Avdeev, M.; Chen, L. Q.; Hu, Y. S. An O3-type oxide with low sodium content as the phase-transition-free anode for sodium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 7056–7060.

    Google Scholar 

  22. Wang, Y. S.; Yu, X. Q.; Xu, S. Y.; Bai, J. M.; Xiao, R. J.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L. Q.; Huang, X. J. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 2013, 4, 2365.

    Google Scholar 

  23. Wang, Y. S.; Liu, J.; Lee, B.; Qiao, R. M.; Yang, Z. Z.; Xu, S. Y.; Yu, X. Q.; Gu, L.; Hu, Y. S.; Yang, W. L. et al. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nat. Commun. 2015, 6, 6401.

    Google Scholar 

  24. Tsuchiya, Y.; Takanashi, K.; Nishinobo, T.; Hokura, A.; Yonemura, M.; Matsukawa, T.; Ishigaki, T.; Yamanaka, K.; Ohta, T.; Yabuuchi, N. Layered NaxCrxTi1-xO2 as bifunctional electrode materials for rechargeable sodium batteries. Chem. Mater. 2016, 28, 7006–7016.

    Google Scholar 

  25. Xia, X.; Dahn, J. R. NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochem. Solid-State Lett. 2012, 15, A1–A4.

    Google Scholar 

  26. Yu, C. Y.; Park, J. S.; Jung, H. G.; Chung, K. Y.; Aurbach, D.; Sun, Y. K.; Myung, S. T. NaCrO2 cathode for high-rate sodium-ion batteries. Energy Environ. Sci. 2015, 8, 2019–2026.

    Google Scholar 

  27. Kubota, K.; Ikeuchi, I.; Nakayama, T.; Takei, C.; Yabuuchi, N.; Shiiba, H.; Nakayama, M.; Komaba, S. New insight into structural evolution in layered NaCrO2 during electrochemical sodium extraction. J. Phys. Chem. C 2015, 119, 166–175.

    Google Scholar 

  28. Didier, C.; Guignard, M.; Denage, C.; Szajwaj, O.; Ito, S.; Saadoune, I.; Darriet, J.; Delmas, C. Electrochemical Na-deintercalation from NaVO2. Electrochem. Solid-State Lett. 2011, 14, A75–A78.

    Google Scholar 

  29. Hamani, D.; Ati, M.; Tarascon, J. M.; Rozier, P. NaxVO2 as possible electrode for Na-ion batteries. Electrochem. Commun. 2011, 13, 938–941.

    Google Scholar 

  30. Didier, C.; Guignard, M.; Suchomel, M. R.; Carlier, D.; Darriet, J.; Delmas, C. Thermally and electrochemically driven topotactical transformations in sodium layered oxides NaxVO2. Chem. Mater. 2016, 28, 1462–1471.

    Google Scholar 

  31. Didier, C.; Guignard, M.; Darriet, J.; Delmas, C. O’3-NaxVO2 system: A superstructure for Na1/2VO2. Inorg. Chem. 2012, 51, 11007–11016.

    Google Scholar 

  32. Guignard, M.; Didier, C.; Darriet, J.; Bordet, P.; Elkaïm, E.; Delmas, C. P2-NaxVO2 system as electrodes for batteries and electron-correlated materials. Nat. Mater. 2013, 12, 74–80.

    Google Scholar 

  33. Wang, Y. S.; Xiao, R. J.; Hu, Y. S.; Avdeev, M.; Chen, L. Q. P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodiumion batteries. Nat. Commun. 2015, 6, 6954.

    Google Scholar 

  34. Cao, M. H.; Wang, Y.; Shadike, Z.; Yue, J. L.; Hu, E. Y.; Bak, S. M.; Zhou, Y. N.; Yang, X. Q.; Fu, Z. W. Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries. J. Mater. Chem. A 2017, 5, 5442–5448.

    Google Scholar 

  35. Lu, Z. H.; Dahn, J. R. In situ and ex situ XRD investigation of Li[CrxLi1/3−x/3Mn2/3−2x/3]O2 (x = 1/3) cathode material. J. Electrochem. Soc. 2003, 150, A1044–A1051.

    Google Scholar 

  36. Balasubramanian, M.; McBreen, J.; Davidson, I. J.; Whitfield, P. S.; Kargina, I. In situ X-ray absorption study of a layered manganese-chromium oxide-based cathode material. J. Electrochem. Soc. 2002, 149, A176–A184.

    Google Scholar 

  37. Zhu, X. B.; Lin, T. E.; Manning, E.; Zhang, Y. C.; Yu, M. M.; Zuo, B.; Wang, L. Z. Recent advances on Fe- and Mn-based cathode materials for lithium and sodium ion batteries. J. Nanopart. Res. 2018, 20, 160.

    Google Scholar 

  38. Clément, R. J.; Bruce, P. G.; Grey, C. P. Review-Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials. J. Electrochem. Soc. 2015, 162, A2589–A2604.

    Google Scholar 

  39. Billaud, J.; Clément, R. J.; Armstrong, A. R.; Canales-Vázquez, J.; Rozier, P.; Grey, C. P.; Bruce, P. G. β-NaMnO2: A high-performance cathode for sodium-ion batteries. J. Am. Chem. Soc. 2014, 136, 17243–17248.

    Google Scholar 

  40. Ma, X. H.; Chen, H. L.; Ceder, G. Electrochemical properties of monoclinic NaMnO2. J. Electrochem. Soc. 2011, 158, A1307–A1312.

    Google Scholar 

  41. Jo, I. H.; Ryu, H. S.; Gu, D. G.; Park, J. S.; Ahn, I. S.; Ahn, H. J.; Nam, T. H.; Kim, K. W. The effect of electrolyte on the electrochemical properties of Na/α-NaMnO2 batteries. Mater. Res. Bull. 2014, 58, 74–77.

    Google Scholar 

  42. Clément, R. J.; Middlemiss, D. S.; Seymour, I. D.; Ilott, A. J.; Grey, C. P. Insights into the nature and evolution upon electrochemical cycling of planar defects in the β-NaMnO2 Na-ion battery cathode: An NMR and first-principles density functional theory approach. Chem. Mater. 2016, 28, 8228–8239.

    Google Scholar 

  43. Kumakura, S.; Tahara, Y.; Sato, S.; Kubota, K.; Komaba, S. P’2-Na2/3Mn0.9Me0.1O2 (Me = Mg, Ti, Co, Ni, Cu, and Zn): Correlation between orthorhombic distortion and electrochemical property. Chem. Mater. 2017, 29, 8958–8962.

    Google Scholar 

  44. Choi, J. U.; Park, Y. J.; Jo, J. H.; Kuo, L. Y.; Kaghazchi, P.; Myung, S. T. Unraveling the role of earth-abundant Fe in the suppression of Jahn-Teller distortion of P’2-type Na2/3MnO2: Experimental and theoretical studies. ACS Appl. Mater. Interfaces 2018, 10, 40978–40984.

    Google Scholar 

  45. Jiang, L. W.; Lu, Y. X.; Wang, Y. S.; Liu, L. L.; Qi, X. G.; Zhao, C. L.; Chen, L. Q.; Hu. Y. S. A high-temperature β-phase NaMnO2 stabilized by Cu doping and its Na storage properties. Chin. Phys. Lett. 2018, 35, 048801.

    Google Scholar 

  46. Konarov, A.; Choi, J. U.; Bakenov, Z.; Myung, S. T. Revisit of layered sodium manganese oxides: Achievement of high energy by Ni incorporation. J. Mater. Chem. A 2018, 6, 8558–8567.

    Google Scholar 

  47. Kumakura, S.; Tahara, Y.; Kubota, K.; Chihara, K.; Komaba, S. Sodium and manganese stoichiometry of P2-type Na2/3MnO2. Angew. Chem., Int. Ed. 2016, 55, 12760–12763.

    Google Scholar 

  48. Lee, E.; Brown, D. E.; Alp, E. E.; Ren, Y.; Lu, J.; Woo, J. J.; Johnson, C. S. New insights into the performance degradation of Fe-based layered oxides in sodium-ion batteries: Instability of Fe3+/Fe4+ redox in a-NaFeO2. Chem. Mater. 2015, 27, 6755–6764.

    Google Scholar 

  49. Zhao, J.; Zhao, L. W.; Dimov, N.; Okada, S.; Nishida, T. Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries. J. Electrochem. Soc. 2013, 160, A3077–A3081.

    Google Scholar 

  50. Yabuuchi, N.; Yoshida, H.; Komaba, S. Crystal structures and electrode performance of alpha-NaFeO2 for rechargeable sodium batteries. Electrochemistry 2012, 80, 716–719.

    Google Scholar 

  51. Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512–517.

    Google Scholar 

  52. Olszewski, W.; Ávila Pérez, M.; Marini, C.; Paris, E.; Wang, X. F.; Iwao, T.; Okubo, M.; Yamada, A.; Mizokawa, T.; Saini, N. L. et al. Temperature dependent local structure of NaxCoO2 cathode material for rechargeable sodium-ion batteries. J. Phys. Chem. C 2016, 120, 4227–4232.

    Google Scholar 

  53. Delmas, C.; Braconnier, J. J.; Fouassier, C.; Hagenmuller, P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics 1981, 3–4, 165–169.

    Google Scholar 

  54. Rai, A. K.; Anh, L. T.; Gim, J.; Mathew, V.; Kim, J. Electrochemical properties of NaxCoO2 (x ∼ 0.71) cathode for rechargeable sodium-ion batteries. Ceram. Int. 2014, 40, 2411–2417.

    Google Scholar 

  55. Bhide, A.; Hariharan, K. Physicochemical properties of NaxCoO2 as a cathode for solid state sodium battery. Solid State Ionics 2011, 192, 360–363.

    Google Scholar 

  56. Vassilaras, P.; Ma, X. H.; Li, X.; Ceder, G. Electrochemical properties of monoclinic NaNiO2. J. Electrochem. Soc. 2013, 160, A207–A211.

    Google Scholar 

  57. Xu, S. Y.; Wu, X. Y.; Li, Y. M.; Hu, Y. S.; Chen, L. Q. Novel copper redox-based cathode materials for room-temperature sodium-ion batteries. Chin. Phys. B 2014, 23, 118202.

    Google Scholar 

  58. Mu, L. Q.; Hu, Y. S.; Chen, L. Q. New layered metal oxides as positive electrode materials for room-temperature sodium-ion batteries. Chin. Phys. B 2015, 24, 038202.

    Google Scholar 

  59. Bai, X.; Sathiya, M.; Mendoza-Sánchez, B.; Iadecola, A.; Vergnet, J.; Dedryvère, R.; Saubanère, M.; Abakumov, A. M.; Rozier, P.; Tarascon, J. M. Anionic redox activity in a newly Zn-doped sodium layered oxide P2-Na2/3Mn1−yZnyO2 (0 < y < 0.23). Adv. Energy Mater. 2018, 8, 1802379.

    Google Scholar 

  60. Wu, X. H.; Xu, G. L.; Zhong, G. M.; Gong, Z. L.; McDonald, M. J.; Zheng, S. Y.; Fu, R. Q.; Chen, Z. H.; Amine, K.; Yang, Y. Insights into the effects of zinc doping on structural phase transition of P2-type sodium nickel manganese oxide cathodes for high-energy sodium ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 22227–22237.

    Google Scholar 

  61. Park, K.; Yu, B. C.; Goodenough, J. B. Electrochemical and chemical properties of Na2NiO2 as a cathode additive for a rechargeable sodium battery. Chem. Mater. 2015, 27, 6682–6688.

    Google Scholar 

  62. Wang, L. G.; Wang, J. J.; Zhang, X. Y.; Ren, Y.; Zuo, P. J.; Yin, G. P.; Wang, J. Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries. Nano Energy 2017, 34, 215–223.

    Google Scholar 

  63. Zentgraf, H.; Hoppe, R. Über neue oxoniccolate: Zur kenntnis von Na2[NiO2]. Z. Anorg. Allg. Chem. 1980, 462, 71–79.

    Google Scholar 

  64. Dick, S.; Müller, M.; Preissinger, F.; Zeiske, T. The structure of monoclinic NaNiO2 as determined by powder X-ray and neutron scattering. Powder Diffr. 1997, 12, 239–241.

    Google Scholar 

  65. Han, M. H.; Gonzalo, E.; Casas-Cabanas, M.; Rojo, T. Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process. J. Power Sources 2014, 258, 266–271.

    Google Scholar 

  66. Shin, Y. J.; Yi, M. Y. Preparation and structural properties of layer-type oxides NaxNix/2Ti1−x/2O2 (0.60 ≤ x ≤ 1.0). Solid State Ionics 2000, 132, 131–141.

    Google Scholar 

  67. Shanmugam, R.; Lai, W. Na2/3Ni1/3Ti2/3O2: “Bi-functional” electrode materials for Na-ion batteries. ECS Electrochem. Lett. 2014, 3, A23–A25.

    Google Scholar 

  68. Alvarado, J.; Ma, C. Z.; Wang, S.; Nguyen, K.; Kodur, M.; Meng, Y. S. Improvement of the cathode electrolyte interphase on P2-Na2/3Ni1/3Mn2/3O2 by atomic layer deposition. ACS Appl. Mater. Interfaces 2017, 9, 26518–26530.

    Google Scholar 

  69. Risthaus, T.; Zhou, D.; Cao, X.; He, X.; Qiu, B.; Wang, J.; Zhang, L.; Liu, Z. P.; Paillard, E.; Schumacher, G. et al. A high-capacity P2 Na2/3Ni1/3Mn2/3O2 cathode material for sodium ion batteries with oxygen activity. J. Power Sources 2018, 395, 16–24.

    Google Scholar 

  70. Lu, Z. H.; Dahn, J. R. In situ X-ray diffraction study of P2-Na2/3[Ni1/3Mn2/3]O2. J. Electrochem. Soc. 2001, 148, A1225–A1229.

    Google Scholar 

  71. Dang, R. B.; Chen, M. M.; Li, Q.; Wu, K.; Lee, Y. L.; Hu, Z. B.; Xiao, X. L. Na+-conductive Na2Ti3O7-modified P2-type Na2/3Ni1/3Mn2/3O2 via a smart in situ coating approach: Suppressing Na+/vacancy ordering and P2–O2 phase transition. ACS Appl. Mater. Interfaces 2018, 11, 856–864.

    Google Scholar 

  72. Yoda, Y.; Kubota, K.; Isozumi, H.; Horiba, T.; Komaba S. Poly-γ-glutamate binder to enhance electrode performances of P2-Na2/3Ni1/3Mn2/3O2 for Na-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 10986–10997.

    Google Scholar 

  73. Lu, Z. H.; Donaberger, R. A.; Dahn, J. R. Superlattice ordering of Mn, Ni, and Co in layered alkali transition metal oxides with P2, P3, and O3 structures. Chem. Mater. 2000, 12, 3583–3590.

    Google Scholar 

  74. Lu, Z. H.; Dahn, J. R. Intercalation of water in P2, T2 and O2 structure Az[CoxNi1/3−xMn2/3]O2. Chem. Mater. 2001, 13, 1252–1257.

    Google Scholar 

  75. Gutierrez, A.; Dose, W. M.; Borkiewicz, O.; Guo, F. M.; Avdeev, M.; Kim, S.; Fister, T. T.; Ren, Y.; Bareño, J.; Johnson, C. S. On disrupting the Na+-ion/vacancy ordering in P2-type sodium-manganese-nickel oxide cathodes for Na+-ion batteries. J. Phys. Chem. C 2018, 122, 23251–23260.

    Google Scholar 

  76. Yoshida, H.; Yabuuchi, N.; Kubota, K.; Ikeuchi, I.; Garsuch, A.; Schulz-Dobrick, M.; Komaba, S. P2-type Na2/3Ni1/3Mn2/3−xTixO2 as a new positive electrode for higher energy Na-ion batteries. Chem. Commun. 2014, 50, 3677–3680.

    Google Scholar 

  77. Shanmugam, R.; Lai, W. Study of transport properties and interfacial kinetics of Na2/3[Ni1/3MnxTi2/3−x]O2 (x = 0, 1/3) as electrodes for Na-ion batteries. J. Electrochem. Soc. 2015, 162, A8–A14.

    Google Scholar 

  78. Gupta, A.; Buddie Mullins, C.; Goodenough, J. B. Na2Ni2TeO6: Evaluation as a cathode for sodium battery. J. Power Sources 2013, 243, 817–821.

    Google Scholar 

  79. Evstigneeva, M. A.; Nalbandyan, V. B.; Petrenko, A. A.; Medvedev, B. S.; Kataev, A. A. A new family of fast sodium ion conductors: Na2M2TeO6 (M = Ni, Co, Zn, Mg). Chem. Mater. 2011, 23, 1174–1181.

    Google Scholar 

  80. Ramasamy, H. V.; Kaliyappan, K.; Thangavel, R.; Aravindan, V.; Kang, K.; Kim, D. U.; Park, Y. I.; Sun, X. L.; Lee, Y. S. Cu-doped P2-Na0.5Ni0.33Mn0.67O2 encapsulated with MgO as a novel high voltage cathode with enhanced Na-storage properties. J. Mater. Chem. A 2017, 5, 13842.

    Google Scholar 

  81. Zuo, W. H.; Liu, R.; Ortiz, G. F.; Rubio, S.; Chyrka, T.; Lavela, P.; Zheng, S. Y.; Tirado, J. L.; Wang, D. H.; Yang, Y. Sodium storage behavior of Na0.66Ni0.33−xZnxMn0.67O2 (x = 0, 0.07 and 0.14) positive materials in diglyme-based electrolytes. J. Power Sources 2018, 400, 317–324.

    Google Scholar 

  82. Zhao, W. W.; Kirie, H.; Tanaka, A.; Unno, M.; Yamamoto, S.; Noguchi, H. Synthesis of metal ion substituted P2-Na2/3Ni1/3Mn2/3O2 cathode material with enhanced performance for Na ion batteries. Mater. Lett. 2014, 135, 131–134.

    Google Scholar 

  83. Kubota, K.; Kumakura, S.; Yoda, Y.; Kuroki, K.; Komaba, S. Electrochemistry and solid-state chemistry of NaMeO2 (Me = 3d transition metals). Adv. Energy Mater. 2018, 8, 1703415.

    Google Scholar 

  84. Yabuuchi, N.; Hara, R.; Kubota, K.; Paulsen, J.; Kumakura, S.; Komaba, S. A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity. J. Mater. Chem. A 2014, 2, 16851–16855.

    Google Scholar 

  85. Doubaji, S.; Ma, L.; Asfaw, H. D.; Izanzar, I.; Xu, R.; Alami, J.; Lu, J.; Wu, T. P.; Amine, K.; Edstrom, K. et al. On the P2-NaxCo1−y(Mn2/3Ni1/3)yO2 cathode materials for sodium-ion batteries: Synthesis, electrochemical performance, and redox processes occurring during the electrochemical cycling. ACS Appl. Mater. Interfaces 2018, 10, 488–501.

    Google Scholar 

  86. Yang, Q.; Wang, P. F.; Guo, J. Z.; Chen, Z. M.; Pang, W. L.; Huang, K. C.; Guo, Y. G.; Wu, X. L.; Zhang, J. P. Advanced P2-Na2/3Ni1/3Mn7/12Fe1/12O2 cathode material with suppressed P2–O2 phase transition toward highperformance sodium-ion battery. ACS Appl. Mater. Interfaces 2018, 10, 34272–34282.

    Google Scholar 

  87. Xu, J.; Lee, D. H.; Clément, R. J.; Yu, X. Q.; Leskes, M.; Pell, A. J.; Pintacuda, G.; Yang, X. Q.; Grey, C. P.; Meng, Y. S. Identifying the critical role of Li substitution in P2-Nax[LiyNizMn1−yz]O2 (0 < x, y, z < 1) intercalation cathode materials for high-energy Na-ion batteries. Chem. Mater. 2014, 26, 1260–1269.

    Google Scholar 

  88. Yu, H. J.; Guo, S. H.; Zhu, Y. B.; Ishida, M.; Zhou, H. S. Novel titanium-based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries. Chem. Commun. 2014, 50, 457–459.

    Google Scholar 

  89. Sathiya, M.; Jacquet, Q.; Doublet, M. L.; Karakulina, O. M.; Hadermann, J.; Tarascon, J. M. A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes. Adv. Energy Mater. 2018, 8, 1702599.

    Google Scholar 

  90. Wang, P. F.; Xin, H. S.; Zuo, T. T.; Li, Q. H.; Yang, X. A.; Yin, Y. X.; Gao, X. K.; Yu, X. Q.; Guo, Y. G. An abnormal 3.7 volt O3-type sodium-ion battery cathode. Angew. Chem., Int. Ed. 2018, 57, 8178–8183.

    Google Scholar 

  91. Goodenough, J. B. Mapping of redox energies. Mol. Cryst. Liq. Cryst. Sci. Technol.. Sec. A. Mol. Cryst. Liq. Cryst. 1998, 311, 1–14.

    Google Scholar 

  92. Komaba, S.; Yabuuchi, N.; Nakayama, T.; Ogata, A.; Ishikawa, T.; Nakai, I. Study on the reversible electrode reaction of Na1−xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery. Inorg. Chem. 2012, 51, 6211–6220.

    Google Scholar 

  93. Zheng, L. T.; Li, L. J.; Shunmugasundaram, R.; Obrovac, M. N. Effect of controlled-atmosphere storage and ethanol rinsing on NaNi0.5Mn0.5O2 for sodium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 38246–38254.

    Google Scholar 

  94. Chen, J.; Li, L. J.; Wu, L.; Yao, Q.; Yang, H. P.; Liu, Z. S.; Xia, L. F.; Chen, Z. Y.; Duan, J. F.; Zhong, S. K. Enhanced cycle stability of Na0.9Ni0.45Mn0.55O2 through tailoring O3/P2 hybrid structures for sodium-ion batteries. J. Power Sources 2018, 406, 110–117.

    Google Scholar 

  95. Yuan, D. D.; Wang, Y. X.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 8585–8591.

    Google Scholar 

  96. Zheng, L. T.; Obrovac, M. N. Investigation of O3-type Na0.9Ni0.45MnxTi0.55−xO2 (0 ≤ x ≤ 0.55) as positive electrode materials for sodium-ion batteries. Electrochim. Acta 2017, 233, 284–291.

    Google Scholar 

  97. Deng, C. J.; Skinner, P.; Liu, Y. Z.; Sun, M. L.; Tong, W.; Ma, C. R.; Lau, M. L.; Hunt, R.; Barnes, P.; Xu, J. et al. Li-substituted layered spinel cathode material for sodium ion batteries. Chem. Mater. 2018, 30, 8145–8154.

    Google Scholar 

  98. Wang, P. F.; Yao, H. R.; Liu, X. Y.; Zhang, J. N.; Gu, L.; Yu, X. Q.; Yin, Y. X.; Guo, Y. G. Ti-substituted NaNi0.5Mn0.5−xTixO2 cathodes with reversible O3–P3 phase transition for high-performance sodium-ion batteries. Adv. Mater. 2017, 29, 1700210.

    Google Scholar 

  99. Wang, H. B.; Gu, M. Y.; Jiang, J. Y.; Lai, C.; Ai, X. P. An O3-type NaNi0.5Mn0.3Ti0.2O2 compound as new cathode material for room-temperature sodium-ion batteries. J. Power Sources 2016, 327, 653–657.

    Google Scholar 

  100. Yuan, D. D.; Liang, X. M.; Wu, L.; Cao, Y. L.; Ai, X. P.; Feng, J. W.; Yang, H. X. A honeycomb-layered Na3Ni2SbO6: A high-rate and cycle-stable cathode for sodium-ion batteries. Adv. Mater. 2014, 26, 6301–6306.

    Google Scholar 

  101. You, Y.; Kim, S. O.; Manthiram, A. A honeycomb-layered oxide cathode for sodium-ion batteries with suppressed P3–O1 phase transition. Adv. Energy Mater. 2017, 7, 1601698.

    Google Scholar 

  102. Bhange, D. S.; Ali, G.; Kim, D. H.; Anang, D. A.; Shin, T. J.; Kim, M. G.; Kang, Y. M.; Chung, K. Y.; Nam, K. W. Honeycomb-layer structured Na3Ni2BiO6 as a high voltage and long life cathode material for sodium-ion batteries. J. Mater. Chem. A 2017, 5, 1300–1310.

    Google Scholar 

  103. Wang, P. F.; Guo, Y. J.; Duan, H.; Zuo, T. T.; Hu, E. Y.; Attenkofer, K.; Li, H. L.; Zhao, X. S.; Yin, Y. X.; Yu, X. Q. et al. Honeycomb-ordered Na3Ni1.5M0.5BiO6 (M = Ni, Cu, Mg, Zn) as high-voltage layered cathodes for sodium-ion batteries. ACS Energy Lett. 2017, 2, 2715–2722.

    Google Scholar 

  104. Ma, J.; Bo, S. H.; Wu, L. J.; Zhu, Y. M.; Grey, C. P.; Khalifah, P. G. Ordered and disordered polymorphs of Na(Ni2/3Sb1/3)O2: Honeycomb-ordered cathodes for Na-ion batteries. Chem. Mater. 2015, 27, 2387–2399.

    Google Scholar 

  105. Aguesse, F.; Lopez del Amo, J. M.; Otaegui, L.; Goikolea, E.; Rojo, T.; Singh, G. Structural and electrochemical analysis of Zn doped Na3Ni2SbO6 cathode for Na-ion battery. J. Power Sources 2016, 336, 186–195.

    Google Scholar 

  106. Dai, H.; Yang, C. H.; Ou, X.; Liang, X. H.; Xue, H.; Wang, W. X.; Xu, G. F. Unravelling the electrochemical properties and thermal behavior of NaNi2/3Sb1/3O2 cathode for sodium-ion batteries by in situ X-ray diffraction investigation. Electrochim. Acta 2017, 257, 146–154.

    Google Scholar 

  107. Xie, Y. Y.; Xu, G. L.; Che, H. Y.; Wang, H.; Yang, K.; Yang, X. R.; Guo, F. M.; Ren, Y.; Chen, Z. H.; Amine, K. et al. Probing thermal and chemical stability of NaxNi1/3Fe1/3Mn1/3O2 cathode material toward safe sodium-ion batteries. Chem. Mater. 2018, 30, 4909–4918.

    Google Scholar 

  108. Li, X.; Wu, D.; Zhou, Y. N.; Liu, L.; Yang, X. Q.; Ceder, G. O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: A quaternary layered cathode compound for rechargeable Na ion batteries. Electrochem. Commun. 2014, 49, 51–54.

    Google Scholar 

  109. Wang, H.; Liao, X. Z.; Yang, Y.; Yan, X. M.; He, Y. S.; Ma, Z. F. Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries. J. Electrochem. Soc. 2016, 163, A565–A570.

    Google Scholar 

  110. Xie, Y. Y.; Wang, H.; Xu, G. L.; Wang, J. J.; Sheng, H. P.; Chen, Z. H.; Ren, Y.; Sun, C. J.; Wen, J. G.; Wang, J. et al. In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation. Adv. Energy Mater. 2016, 6, 1601306.

    Google Scholar 

  111. Yao, H. R.; Wang, P. F.; Gong, Y.; Zhang, J. N.; Yu, X. Q.; Gu, L.; Ouyang, C. Y.; Yin, Y. X.; Hu, E. Y.; Yang, X. Q. et al. Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries. J. Am. Chem. Soc. 2017, 139, 8440–8443.

    Google Scholar 

  112. Vassilaras, P.; Kwon, D. H.; Dacek, S. T.; Shi, T.; Seo, D. H.; Ceder, G.; Kim, J. C. Electrochemical properties and structural evolution of O3-type layered sodium mixed transition metal oxides with trivalent nickel. J. Mater. Chem. A 2017, 5, 4596–4606.

    Google Scholar 

  113. Thorne, J. S.; Zheng, L. T.; Lee, C. L. D.; Dunlap, R. A.; Obrovac, M. N. Synthesis and electrochemistry of O3-type NaFeO2-NaCo0.5Ni0.5O2 solid solutions for Na-ion positive electrodes. ACS Appl. Mater. Interfaces 2018, 10, 22013–22022.

    Google Scholar 

  114. Vassilaras, P.; Toumar, A. J.; Ceder, G. Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries. Electrochem. Commun. 2014, 38, 79–81.

    Google Scholar 

  115. Hwang, J. Y.; Yoon, C. S.; Belharouak, I.; Sun, Y. K. A comprehensive study of the role of transition metals in O3-type layered Na[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, and 0.8) cathodes for sodium-ion batteries. J. Mater. Chem. A 2016, 4, 17952–17959.

    Google Scholar 

  116. Zhou, P. F.; Liu, X. L.; Weng, J. Y.; Wang, L.; Wu, X. Z.; Miao, Z. C.; Zhao, J. P.; Zhou, J.; Zhuo, S. P. Synthesis, structure, and electrochemical properties of O’3-type monoclinic NaNi0.8Co0.15Al0.05O2 cathode materials for sodium-ion batteries. J. Mater. Chem. A 2019, 7, 657–663.

    Google Scholar 

  117. Kubota, K.; Asari, T.; Yoshida, H.; Yaabuuchi, N.; Shiiba, H.; Nakayama, M.; Komaba, S. Understanding the structural evolution and redox mechanism of a NaFeO2-NaCoO2 solid solution for sodium-ion batteries. Adv. Funct. Mater. 2016, 26, 6047–6059.

    Google Scholar 

  118. You, Y.; Dolocan, A.; Li, W. D.; Manthiram, A. Understanding the air-exposure degradation chemistry at a nanoscale of layered oxide cathodes for sodium-ion batteries. Nano Lett. 2019, 19, 182–188.

    Google Scholar 

  119. Hwang, J. Y.; Oh, S. M.; Myung, S. T.; Chung, K. Y.; Belharouak, I.; Sun, Y. K. Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nat. Commun. 2015, 6, 6865.

    Google Scholar 

  120. Hwang, J. Y.; Myung, S. T.; Choi, J. U.; Yoon, C. S.; Yashiro, H.; Sun, Y. K. Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries. J. Mater. Chem. A 2017, 5, 23671–23680.

    Google Scholar 

  121. Sun, H. H.; Hwang, J. Y.; Yoon, C. S.; Heller, A.; Mullins, C. B. Capacity degradation mechanism and cycling stability enhancement of AlF3-coated nanorod gradient Na[Ni0.65Co0.08Mn0.27]O2 cathode for sodium-ion batteries. ACS Nano 2018, 12, 12912–12922.

    Google Scholar 

  122. Ji, Z.; Han, B.; Liang, H. T.; Zhou, C. G.; Gao, Q.; Xia, K. S.; Wu, J. P. On the mechanism of the improved operation voltage of rhombohedral nickel hexacyanoferrate as cathodes for sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 33619–33625.

    Google Scholar 

  123. Zhang, H.; Hasa, I.; Buchholz, D.; Qin, B. S.; Geiger, D.; Jeong, S.; Kaiser, U.; Passerini, S. Exploring the Ni redox activity in polyanionic compounds as conceivable high potential cathodes for Na rechargeable batteries. NPG Asia Mater. 2017, 9, e370.

    Google Scholar 

  124. Kundu, D.; Tripathi, R.; Popov, G.; Makahnouk, W. R. M.; Nazar, L. F. Synthesis, structure, and Na-ion migration in Na4NiP2O7F2: A prospective high voltage positive electrode material for the Na-ion battery. Chem. Mater. 2015, 27, 885–891.

    Google Scholar 

  125. Ma, X. H.; Wei, Y. Y.; Wu, Y. D.; Wang, J.; Jia, W.; Zhou, J. H.; Zi, Z. F.; Dai, J. M. High crystalline Na2Ni[Fe(CN)6] particles for a high-stability and low-temperature sodium-ion batteries cathode. Electrochim. Acta 2019, 297, 392–397.

    Google Scholar 

  126. Marzak, P.; Yun, J.; Dorsel, A.; Kriele, A.; Gilles, R.; Schneider, O.; Bandarenka, A. S. Electrodeposited Na2Ni[Fe(CN)6] thin-film cathodes exposed to simulated aqueous Na-ion battery conditions. J. Phys. Chem. C 2018, 122, 8760–8768.

    Google Scholar 

  127. Duffort, V.; Talaie, E.; Black, R.; Nazar, L. F. Uptake of CO2 in layered P2-Na0.67Mn0.5Fe0.5O2: Insertion of carbonate anions. Chem. Mater. 2015, 27, 2515–2524.

    Google Scholar 

  128. Zheng, L. T.; Li, J. R.; Obrovac, M. N. Crystal structures and electrochemical performance of air-stable Na2/3Ni1/3−xCuxMn2/3O2 in sodium cells. Chem. Mater. 2017, 29, 1623–1631.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2016YFB0901500), the National Natural Science Foundation of China (Nos. 51725206 and 51421002), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA21070500), Beijing Natural Science Fund — Haidian Original Innovation Joint Fund (No. L182056) and Beijing Municipal Science and Technology Commission (No. Z181100004718008). C. L. Z. also thanks to the State Scholarship Fund of China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaxiang Lu or Yong-Sheng Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Lu, Y., Chen, L. et al. Ni-based cathode materials for Na-ion batteries. Nano Res. 12, 2018–2030 (2019). https://doi.org/10.1007/s12274-019-2451-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2451-3

Keywords

Navigation