Skip to main content

Advertisement

Log in

Composition, structure, and performance of Ni-based cathodes in lithium ion batteries

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

With the rapid development of electric vehicles, Ni-based cathodes attract increasing attention as used in power batteries due to their high capacity and low cost. However, Ni-based cathodes are faced with several problems, such as Li/Ni disorder, cycle capacity degrading, poor storage in air, and thermal instability. This review carefully compared the structure difference between LiNiO2 and LiCoO2 and concluded that the electronic structure of Ni3+ determined the instability of LiNiO2. The degrading mechanism during long cycle was discussed in the second part and it could be attributed to the surface properties. Moisture sensitive severely restricts the application of Ni-based cathodes due to the gelation in slurry making and gas released in batteries. Some possible mechanisms proposed by previous researchers were reviewed in the third part and a new interpretation on the basis of diffusion was also suggested. Lastly, the nature of thermal instability of Ni-based cathodes was presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Noh HJ, Youn S, Yoon CS, Sun YK (2013) J Power Sources 233:121–130

    Article  CAS  Google Scholar 

  2. Park J-K (2012) Principles and applications of lithium secondary batteries, 1st edn. Wiley, Weinheim, Germany

    Book  Google Scholar 

  3. Ohzuku T, Ueda A, Nagayama M (1993) J Electrochem Soc 140:1862–1870

    Article  CAS  Google Scholar 

  4. Peres JP, Delmas C, Rougier A, Broussely M, Perton F, Biensan P, Willmann P (1996) J Phys Chem Solids 57:1057–1060

    Article  CAS  Google Scholar 

  5. Mueller-Neuhaus JR, Dunlap RA, Dahn JR (2000) J Electrochem Soc 147:3598–3605

    Article  CAS  Google Scholar 

  6. Delmas C, Peres JP, Rougier A, Demourgues A, Weill F, Chadwick A, Broussely M, Perton F, Biensan P, Willmann P (1997) J Power Sources 68:120–125

    Article  CAS  Google Scholar 

  7. Moshtev R, Zlatilova P, Manev V, Sato A (1995) J Power Sources 54:329–333

    Article  CAS  Google Scholar 

  8. Petit L, Stocks GM, Egami T, Szotek Z, Temmerman WM (2006) Phys Rev Lett 97(1–4):146405

    Article  CAS  Google Scholar 

  9. Hungru C (2012) Simulations for new battery materials. Ph.D. The University of Sheffield, U.K.

    Google Scholar 

  10. Laubach S, Laubach S, Schmidt PC, Ensling D, Schmid S, Jaegermann W, Thissen A, Nikolowski K, Ehrenberg H (2009) Phys Chem Chem Phys 11:3278–3289

    Article  CAS  Google Scholar 

  11. Kleiner K, Melke J, Merz M, Jakes P, Nagel P, Schuppler S, Liebau V, Ehrenberg H (2015) Appl Mater Interfaces 11:3278–3289

    Google Scholar 

  12. Nazri G-A, Pistoia G (2009) Lithium batteries: science and technology , 1st edn. Springer, New York

    Google Scholar 

  13. Koyama Y, Arai H, Tanaka I, Uchimoto Y, Ogumi Z (2012) Chem Mater 24:3886–3894

    Article  CAS  Google Scholar 

  14. Yang ZX, Wang B, Yang W, Wei X (2007) Electrochim Acta 52:8069–8074

    Article  CAS  Google Scholar 

  15. Rougier A, Saadoune I, Gravereau P, Willmann P, Delmas C (1996) Solid State Ionics 90:83–90

    Article  CAS  Google Scholar 

  16. Julien C, Nazri G (1998) Mater Res Soc Symp Proc 548:79–90

    Article  Google Scholar 

  17. Kostov S, Wang Y, denBoer ML, Greenbaum S, Change CC, Kumta PN (1997) Mater Res Soc Symp Proc 496:427–434

    Article  Google Scholar 

  18. Delmas C, Menetrier M, Croguennec L, Saadoune I, Rougier A, Pouillerie C, Prado G, Grune M, Fournes L (1999) Electrochim Acta 45:243–253

    Article  CAS  Google Scholar 

  19. Ohzuku T, Ueda A, Kouguchi M (1995) J Electrochem Soc 142:4033–4039

    Article  CAS  Google Scholar 

  20. Guilmard M, Croguennec L, Denux D, Delmas C (2003) Chem Mater 15:4476–4483

    Article  CAS  Google Scholar 

  21. Kleiner K, Dixon D, Jakes P, Melke J, Yavuz M, Roth C, Nikolowski K, Liebau V, Ehrenberg H (2015) J Power Sources 273:70–82

    Article  CAS  Google Scholar 

  22. Liu W, Oh P, Liu X, Lee MJ, Cho W, Chae S, Kim Y, Cho J (2015) Angew Chem Int Ed 54:4440–4457

    Article  CAS  Google Scholar 

  23. Manthiram A, Knight JC, Myung S-T, Oh S-M, Sun Y-K (2016) Adv Energy Mater 6 (1–23):1501010

    Article  CAS  Google Scholar 

  24. Kim Y, Kim D (2012) ACS Appl Mater Interfaces 3:586–589

    Article  CAS  Google Scholar 

  25. Xie H, Du K, Hu G, Duan J, Peng Z, Zhang Z, Cao Y (2015) J Mater Chem A 3:20236–20243

    Article  CAS  Google Scholar 

  26. MacNeil DD, Lu Z, Dahn JR (2002) J Electrochem Soc 149:A1332–A1336

    Article  CAS  Google Scholar 

  27. Xiao J, Chernova NA, Whittingham MS (2010) Chem Mater 22:1180–1185

    Article  CAS  Google Scholar 

  28. Hoang K, Johannes M (2016) Chem Mater 28:1325–1334

    Article  CAS  Google Scholar 

  29. Hu GR, Liu WM, Peng ZD, Du K, Cao YB (2012) J Power Sources 198:258–263

    Article  CAS  Google Scholar 

  30. Lu CH, Wei-Cheng L (2000) J Mater Chem 10:1403–1407

    Article  CAS  Google Scholar 

  31. Chang C-C, Kim J, Kumta PN (2002) J Electrochem Soc 149:A331–A338

    Article  CAS  Google Scholar 

  32. Ruan ZW, Zhu YM, Teng XG (2015) J Mater Sci 51:1400– 1408

    Article  CAS  Google Scholar 

  33. Idris MS, West AR (2012) J Electrochem Soc 159:A396–A401

    Article  CAS  Google Scholar 

  34. Shim J, Kim CY, Cho SW, Missiul A, Kim J, Ahn YJ, Lee S (2014) Electrochim Acta 138:15–21

    Article  CAS  Google Scholar 

  35. Bi Y, Yang W, Du R, Zhou J, Liu M, Liu Y, Wang D (2015) J Power Sources 283:211–218

    Article  CAS  Google Scholar 

  36. Stoyanova R (2003) Solid State Ionics 161:197–204

    Article  CAS  Google Scholar 

  37. Arai H, Okada S, Ohtsuka H, Ichimura M, Yamaki J (1995) Solid State Ionics 80:261–269

    Article  CAS  Google Scholar 

  38. Manthiram A, Chebiam RV, Prado F Sixteenth Annual Battery Conference on Applications and Advances 2001, 269–274

  39. Chebiam RV, Prado F, Manthiram A (2002) J Solid State Chem 163:5–9

    Article  CAS  Google Scholar 

  40. Chebiam RV, Prado F, Manthiram A (2001) Chem Mater 13:2951–2957

    Article  CAS  Google Scholar 

  41. Makimura Y, Zheng SJ, Ikuhara Y, Ukyo Y (2012) J Electrochem Soc 159:A1070–A1073

    Article  CAS  Google Scholar 

  42. Nonaka T, Okuda C, Seno Y, Kondo Y, Koumoto K, Ukyo Y (2007) J Electrochem Soc 154:A353–A358

    Article  CAS  Google Scholar 

  43. Balasubramanian M, Sun X, Yang XQ, McBreen J (2001) J Power Sources 92:1–8

    Article  CAS  Google Scholar 

  44. Mansour AN, McBreen J, Melendres CA (1999) J Electrochem Soc 146:2799–2809

    Article  CAS  Google Scholar 

  45. Robert R, Bünzli C, Berg E, Novák P (2015) Chem Mater 27:526–536

    Article  CAS  Google Scholar 

  46. Kang S, Yoon WS, Nam KW, Yang XQ, Abraham DP (2008) J Mater Sci 43:4701–4706

    Article  CAS  Google Scholar 

  47. Kang S, Abraham DP, Yoon WS, Nam KW, Yang XQ (2008) Electrochim Acta 54:684–689

    Article  CAS  Google Scholar 

  48. Bianchi V, Bach S, Belhomme C, Farcy J, Pereira-Ramos JP, Caurant D, Baffier N, Willmann P (2001) Electrochim Acta 46:999–1011

    Article  CAS  Google Scholar 

  49. Molenda J, Wilk P, Marzec J (2002) Solid State Ionics 146:73–79

    Article  CAS  Google Scholar 

  50. Mansour AN, Yang XQ, Sun X, McBreen J, Croguennec L, Delmas C (2000) J Electrochem Soc 147:2104–2109

    Article  CAS  Google Scholar 

  51. Kobayashi H, Shikano M, Koike S, Sakaebe H, Tatsunii K (2007) J Power Sources 174:380–386

    Article  CAS  Google Scholar 

  52. Abraham DP, Twesten RD, Balasubramanian M, Kropf J, Fischer D, McBreen J, Petrov I, Amine K (2003) J Electrochem Soc 150:A1450–A1456

    Article  CAS  Google Scholar 

  53. Muto S, Sasano Y, Tatsumi K, Sasaki T, Horibuchi K, Takeuchi Y, Ukyo Y (2009) J Electrochem Soc 156:A371–A377

    Article  CAS  Google Scholar 

  54. Kojima Y, Muto S, Tatsumi K, Kondo H, Oka H, Horibuchi K, Ukyo Y (2011) J Power Sources 196:7721–7727

    Article  CAS  Google Scholar 

  55. Abraham DP, Twesten RD, Balasubramanian M, Petrov I, McBreen J, Amine K (2002) Electrochem Commun 4:620–625

    Article  CAS  Google Scholar 

  56. Zheng SJ, Huang R, Makimura Y, Ukyo Y, Fisher CAJ, Hirayama T, Ikuhara Y (2011) J Electrochem Soc 158:A357–A362

    Article  CAS  Google Scholar 

  57. Sasaki T, Nonaka T, Oka H, Okuda C, Itou Y, Kondo Y, Takeuchi Y, Ukyo Y, Tatsumi K, Muto S (2009) J Electrochem Soc 156:A289–A293

    Article  CAS  Google Scholar 

  58. Hwang S, Chang W, Kim SM, Su D, Kim D, Lee JY, Chung KY, Stach EA (2014) Chem Mater 26:1084–1092

    Article  CAS  Google Scholar 

  59. Hwang S, Kim SM, Bak SM, Chung KY, Chang W (2015) Chem Mater 27:6044–6052

    Article  CAS  Google Scholar 

  60. Andersson AM, Abraham DP, Haasch R, MacLaren S, Liu J, Amine K (2002) J Electrochem Soc 149:A1358–A1369

    Article  CAS  Google Scholar 

  61. Shikano A, Kobayashi H, Koike S, Sakaebe H, Ikenaga E, Kobayashi K, Tatsumi K (2007) J Power Sources 174:795– 799

    Article  CAS  Google Scholar 

  62. Rahman MK, Saito Y (2007) J Power Sources 174:889–894

    Article  CAS  Google Scholar 

  63. Kostecki R, Lei JL, McLarnon F, Shim J, Striebel K (2006) J Electrochem Soc 153:A669–A672

    Article  CAS  Google Scholar 

  64. Watanabe S, Kinoshita M, Hosokawa T, Morigaki K, Nakura K (2014) J Power Sources 260:50–56

    Article  CAS  Google Scholar 

  65. Watanabe S, Kinoshita M, Hosokawa T, Morigaki K, Nakura K (2014) J Power Sources 258:210–217

    Article  CAS  Google Scholar 

  66. Watanabe S, Kinoshita M, Nakura KJ (2014) J Power Sources 247:412–422

    Article  CAS  Google Scholar 

  67. Miller DJ, Proff C, Wen JG, Abraham DP, Bareno J (2013) Adv Energy Mater 3:1098–1103

    Article  CAS  Google Scholar 

  68. Yoon WS, Chung KY, McBreen J, Yang XQ (2006) Electrochem Commun 8:1257–1262

    Article  CAS  Google Scholar 

  69. Pang WK, Alam M, Peterson VK, Sharma N (2015) J Mater Res 30:373–380

    Article  CAS  Google Scholar 

  70. Robertz R, Novak P (2015) J Electrochem Soc 162:A1823–A1828

    Article  CAS  Google Scholar 

  71. Ronci F, Scrosati B, Albertini VR, Perfetti P (2001) J Phys Chem B 105:754–759

    Article  CAS  Google Scholar 

  72. Dokko K, Nishizawa M, Horikoshi S, Itoh T, Mohamedi M, Uchida I (2000) Electrochem Solid-State Lett 3:125–127

    Article  CAS  Google Scholar 

  73. Lee EJ, Chen ZH, Noh HJ, Nam SC, Kang S, Kim D, Amine K, Sun YK (2014) Nano Lett 14:4873–4880

    Article  CAS  Google Scholar 

  74. Woodford WH, Carter WC, Chiang YM (2012) Energy Environ Sci 5:8014–8024

    Article  CAS  Google Scholar 

  75. Hu YH, Zhao XH, Suo ZG (2010) J Mater Res 25:1007–1010

    Article  CAS  Google Scholar 

  76. Zhao KJ, Pharr M, Vlassak JJ, Suo ZG (2010) J Appl Phys 108:0021–8979

    Google Scholar 

  77. Yao Y, McDowell MT, Ryu I, Wu H, Liu NA, Hu LB, Nix WD, Cui Y (2011) Nano Lett 11:2949–2954

    Article  CAS  Google Scholar 

  78. Liu Y, Duan H (2016) Alkali-ion batteries, 1st edn. InTech, Rijeka, Croatia

    Google Scholar 

  79. Cho Y, Lee Y, Park SA, Lee Y, Cho J (2010) Electrochim Acta 56:333–339

    Article  CAS  Google Scholar 

  80. Chen YP, Zhang Y, Chen BJ, Wang Z, Lu C (2014) J Power Sources 256:20–27

    Article  CAS  Google Scholar 

  81. Cho Y, Cho J (2010) J Electrochem Soc 157:A625–A629

    Article  CAS  Google Scholar 

  82. Won-Sub Y, Kyung-Wan N, Donghyuk J, Chung KY, Jonathan H, Jin-Ming C, Xiao-Qing Y (2012) J Power Sources 217:128–134

    Article  CAS  Google Scholar 

  83. Cho Y, Oh P, Cho J (2013) Nano Lett 13:1145–1152

    Article  CAS  Google Scholar 

  84. Huang B, Li X, Wang Z, Guo H, Shen L, Wang J (2014) J Power Sources 252:200–207

    Article  CAS  Google Scholar 

  85. Sun YK, Noh HJ, Yoon CS (2012) J Electrochem Soc 159:A1–A5

    Article  CAS  Google Scholar 

  86. Shen L, Li H, Uchaker E, Zhang X, Cao G (2012) Nano Lett 12:5673–5678

    Article  CAS  Google Scholar 

  87. Ju JH, Ryu KS (2011) J Alloys Compd 509:7985–7992

    Article  CAS  Google Scholar 

  88. Sun YK, Kim D, Yoon CS, Myung ST, Prakash J, Amine K (2010) Adv Funct Mater 20:485–491

    Article  CAS  Google Scholar 

  89. Kubo K, Arai S, Yamada S, Kanda M (1999) J Power Sources 81:599–603

    Article  Google Scholar 

  90. Naghash AR, Lee JY (2001) Electrochim Acta 46:941–951

    Article  CAS  Google Scholar 

  91. Zhu L, Liu Y, Wu W, Wu X, Tang W, Wu Y (2015) J Mater Chem A 3:15156–15162

    Article  CAS  Google Scholar 

  92. Wang J, Du C, Yan C, Xu X, He X, Yin G, Zuo P, Cheng X, Ma Y, Gao Y (2016) RSC Adv 6:26307–26316

    Article  CAS  Google Scholar 

  93. Lee SH, Yoon CS, Amine K, Sun YK (2013) J Power Sources 234:201–207

    Article  CAS  Google Scholar 

  94. Song SW, Zhuang GV, Ross PN (2004) J Electrochem Soc 151:A1162–A1167

    Article  CAS  Google Scholar 

  95. Saito Y, Shikano M, Kobayashi H (2011) J Power Sources 196:6889–6892

    Article  CAS  Google Scholar 

  96. Zhu XJ, Chen HH, Zhan H, Yang DL, Zhou YH (2005) J Mater Sci 40:2995–2997

    Article  CAS  Google Scholar 

  97. Kim J, Hong YS, Ryu KS, Kim MG, Cho J (2006) Electrochem Solid State Lett 9:A19–A23

    Article  CAS  Google Scholar 

  98. Xunhui X, Zhixing W, Peng Y, Huajun G, Feixiang W, Jiexi W, Xinhai L (2013) J Power Sources 222:318–325

    Article  CAS  Google Scholar 

  99. Zhang XY, Jiang WJ, Zhu XP, Mauger A, Qilu, Julien CM (2011) J Power Sources 196:5102–5108

    Article  CAS  Google Scholar 

  100. Mijung N, Lee Y, Cho J (2006) J Electrochem Soc 153:A935–A940

    Article  CAS  Google Scholar 

  101. Eom J, Kim MG, Cho J (2008) J Electrochem Soc 155:A239–A245

    Article  CAS  Google Scholar 

  102. Liu WM, Hu GR, Du K, Peng ZD, Cao YB (2013) J Power Sources 230:201–206

    Article  CAS  Google Scholar 

  103. Manthiram A, Goodenough JB (1987) Can J Phys 65:1309–1317

    Article  CAS  Google Scholar 

  104. Li J, Zheng JM, Yang Y (2007) J Electrochem Soc 154:A427–A432

    Article  CAS  Google Scholar 

  105. Moses AW, Flores HGG, Kim J, Langell MA (2007) Appl Surf Sci 253:4782–4791

    Article  CAS  Google Scholar 

  106. Matsumoto K, Kuzuo R, Takeya K, Yamanaka A (1999) J Power Sources 81:558–561

    Article  Google Scholar 

  107. Shizuka K, Kiyohara C, Shima K, Takeda YJ (2007) J Power Sources 166:233–238

    Article  CAS  Google Scholar 

  108. Liu HS, Yang Y, Zhang JJ (2007) J Power Sources 173:556–561

    Article  CAS  Google Scholar 

  109. Moshtev R, Zlatilova P, Vasilev S, Bakalova I, Kozawa AJ (1999) J Power Sources 81:434–441

    Article  Google Scholar 

  110. Dahn J, Fong R, Von Sacken U (1993) Lithiated nickel dioxide and secondary cells prepared therefrom. US Patent 5264201

  111. Wu W, Feng H, Wu K (1991) Handbook of Standard Electrode Potentials

  112. Huggins RA (2006) J Power Sources 153:365–370

    Article  CAS  Google Scholar 

  113. Huggins RA (2009) Advanced batteries: Materials science aspects, 1st edn. Springer, New York

    Google Scholar 

  114. Netz A, Chu WF, Thangadurai V, Huggins RA, Weppner W (1999) Ionics 5:426–433

    Article  CAS  Google Scholar 

  115. Sacken UV (1993) Hydrides of lithiated nickel dioxide and secondary cells prepared therefrom. US Patent 5180574

  116. Endres P, Ott A, Kemmler-Sack S, Jager A, Mayer HA, Praas HW, Brandt K (1997) J Power Sources 69:145–156

    Article  CAS  Google Scholar 

  117. Simon DR, Kelder EM, Wagemaker M, Mulder FM, Schoonman J (2006) Solid State Ionics 177:2759–2768

    Article  CAS  Google Scholar 

  118. Gamsjäger H, Bugajski J, Gajda T, Robert J, Preis W (2005) Chemical thermodynamics of nickel. Nuclear energy agency. Issy-les-Moulineaux, France

    Google Scholar 

  119. Hall DS, Lockwood DJ, Bock C, MacDougall BR (2015) Proc R Soc A 471(1–65):0792

    Google Scholar 

  120. Liu HS, Yang Y, Zhang JJ (2006) J Power Sources 162:644–650

    Article  CAS  Google Scholar 

  121. Wang MJ, Navrotsky A (2004) Solid State Ionics 166:167–173

    Article  CAS  Google Scholar 

  122. Yokokawa H, Sakai N, Yamaji K, Horita T, Ishikawa M (1998) Solid State Ionics 113:1–9

    Article  Google Scholar 

  123. Qinghua T, Yuntao X, Fangfang M, Hengli W, Xueyi G (2015) Trans Nonferrous Met Soc China 25:472–478

    Google Scholar 

  124. Hem JD, Roberson CE, Lind CJ (1985) Geochim Cosmochim Acta 49:801–810

    Article  CAS  Google Scholar 

  125. Macdonald D, Challingsworth M (1993) J Electrochem Soc 140:606–608

    Article  CAS  Google Scholar 

  126. Haik O, Leifer N, Samuk-Fromovich Z, Zinigrad E, Markovsky B, Larush L, Goffer Y, Goobes G, Aurbach D (2010) J Electrochem Soc 157:A1099–A1107

    Article  CAS  Google Scholar 

  127. Liu HS, Zhang ZR, Gong ZL, Yang Y (2004) Electrochem Solid-State Lett 7:A190–A193

    Article  CAS  Google Scholar 

  128. Hirayama M, Sakamoto K, Hiraide T, Mori D, Yamada A, Kanno R, Sonoyama N, Tamura K, Mizuki J (2007) Electrochim Acta 53:871–881

    Article  CAS  Google Scholar 

  129. Sakamoto K, Hirayama M, Sonoyama N, Mori D, Yamada A, Tamura K, Mizuki J, Kanno R (2009) Chem Mater 21:2632–2640

    Article  CAS  Google Scholar 

  130. Li DC, Liu T, Zhao L, Yuan WK (2009) Ind Eng Chem Res 48:7117–7124

    Article  CAS  Google Scholar 

  131. Nowotny J, Sadowski A (1979) J Am Ceram Soc 62:24–28

    Article  CAS  Google Scholar 

  132. Kim Y, Cho J (2007) J Electrochem Soc 154:A495–A499

    Article  CAS  Google Scholar 

  133. Xiong XH, Wang ZX, Yan GC, Guo HJ, Li XH (2014) J Power Sources 245:183–193

    Article  CAS  Google Scholar 

  134. Kannan AM, Manthiram A (2003) J Electrochem Soc 150:A349–A353

    Article  CAS  Google Scholar 

  135. Belharouak I, Lu WQ, Liu J, Vissers D, Amine K (2007) J Power Sources 174:905–909

    Article  CAS  Google Scholar 

  136. Yoon WS, Haas O, Muhammad S, Kim H, Lee W, Kim D, Fischer DA, Jaye C, Yang XQ, Balasubramanian M, Nam KW (2014) Sci Rep 4:6827

    Article  CAS  Google Scholar 

  137. Belharouak I, Lu WQ, Vissers D, Amine K (2006) Electrochem Commun 8:329–335

    Article  CAS  Google Scholar 

  138. Cho YH, Jang D, Yoon J, Kim H, Ahn TK, Nam KW, Sung YE, Kim WS, Lee Y, Yang XQ, Yoon WS (2013) J Alloys Compd 562:219–223

    Article  CAS  Google Scholar 

  139. Wang L, Maxisch T, Ceder G (2007) Chem Mater 19:543–552

    Article  CAS  Google Scholar 

  140. Yoon WS, Chung KY, Balasubramanian M, Hanson J, McBreen J, Yang XQJ (2006) J Power Sources 163:219–222

    Article  CAS  Google Scholar 

  141. Wu LJ, Nam KW, Wang XJ, Zhou YN, Zheng JC, Yang XQ, Zhu YM (2011) Chem Mater 23:3953–3960

    Article  CAS  Google Scholar 

  142. Nam KW, Bak SM, Hu EY, Yu XQ, Zhou YN, Wang XJ, Wu LJ, Zhu YM, Chung KY, Yang XQ (2013) Adv Funct Mater 23:1047–1063

    Article  CAS  Google Scholar 

  143. Bak SM, Nam KW, Chang W, Yu XQ, Hu EY, Hwang S, Stach EA, Kim KB, Chung KY, Yang XQ (2013) Chem Mater 25:337–351

    Article  CAS  Google Scholar 

  144. MacNeil DD, Dahn JR (2002) J Electrochem Soc 149:A912–A919

    Article  CAS  Google Scholar 

  145. Jiang J, Dahn JR (2004) Electrochem Commun 6:39–43

    Article  CAS  Google Scholar 

  146. Chebiam RV, Prado F, Manthiram A (2001) J Electrochem Soc 148:A49–A53

    Article  CAS  Google Scholar 

  147. Chang KK, Hallstedt B, Music D (2012) Chem Mater 24:97–105

    Article  CAS  Google Scholar 

  148. Guilmard M, Croguennec L, Delmas C (2003) Chem Mater 15:4484–4493

    Article  CAS  Google Scholar 

  149. Chebiam RV, Prado F, Manthiram A (2002) Ceram Trans 127:11–18

    CAS  Google Scholar 

  150. Cho J (2000) Chem Mater 12:3089–3094

    Article  CAS  Google Scholar 

  151. D’Epifanio A, Croce F, Ronci F, Albertini VR, Traversa E, Scrosati B (2004) Chem Mater 16:3559–3564

    Article  CAS  Google Scholar 

  152. Cao H, Xia BJ, Xu NX, Zhang CF (2004) J Alloys Compd 376:282–286

    Article  CAS  Google Scholar 

  153. Konishi H, Yuasa T, Yoshikawa M (2011) J Power Sources 196:6884–6888

    Article  CAS  Google Scholar 

  154. Kim Y (2012) J Mater Sci 47:7558–7563

    Article  CAS  Google Scholar 

  155. Park BC, Kim HB, Myung ST, Amine K, Belharouak I, Lee SM, Sun YK (2008) J Power Sources 178:826–831

    Article  CAS  Google Scholar 

  156. Cho J, Kim TJ, Kim J, Noh M, Park B (2004) J Electrochem Soc 151:A1899–A1904

    Article  CAS  Google Scholar 

  157. Zhecheva E, Stoyanova R, Tyuliev G, Tenchev K, Mladenov M, Vassilev S (2003) Solid State Sci 5:711–720

    Article  CAS  Google Scholar 

  158. Noh HJ, Myung ST, Lee YJ, Sun YK (2014) Chem Mater 26:5973–5979

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (2016ZY0200347102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhui Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Zhang, J., Xie, X. et al. Composition, structure, and performance of Ni-based cathodes in lithium ion batteries. Ionics 23, 1337–1356 (2017). https://doi.org/10.1007/s11581-017-2064-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2064-3

Keywords

Navigation