Skip to main content
Log in

A polyimide cathode with superior stability and rate capability for lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Organic-based electrode materials for lithium-ion batteries (LIBs) are promising due to their high theoretical capacity, structure versatility and environmental benignity. However, the poor intrinsic electric conductivity of most polymers results in slow reaction kinetics and hinders their application as electrode materials for LIBs. A binder-free self-supporting organic electrode with excellent redox kinetics is herein demonstrated via in situ polymerization of a uniform thin polyimide (PI) layer on a porous and highly conductive carbonized nanofiber (CNF) framework. The PI active material in the porous PI@CNF film has large physical contact area with both the CNF and the electrolyte thus obtains superior electronic and ionic conduction. As a result, the PI@CNF cathode exhibits a discharge capacity of 170 mAh·g−1 at 1 C (175 mA·g−1), remarkable rate-performance (70.5% of 0.5 C capacity can be obtained at a 100 C discharge rate), and superior cycling stability with 81.3% capacity retention after 1,000 cycles at 1 C. Last but not least, a four-electron transfer redox process of the PI polymer was realized for the first time thanks to the excellent redox kinetics of the PI@CNF electrode, showing a discharge capacity exceeding 300 mAh·g−1 at a current of 175 mA·g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

    Article  Google Scholar 

  2. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

    Article  Google Scholar 

  3. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

    Article  Google Scholar 

  4. Liang, Y. L.; Yao, Y. Positioning organic electrode materials in the battery landscape. Joule 2018, 2, 1690–1706.

    Article  Google Scholar 

  5. Song, Z. P.; Zhou, H. S. Towards sustainable and versatile energy storage devices: An overview of organic electrode materials. Energy Environ. Sci. 2013, 6, 2280–2301.

    Article  Google Scholar 

  6. Liang, Y. L.; Tao, Z. L.; Chen, J. Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2012, 2, 742–769.

    Article  Google Scholar 

  7. Muench, S.; Wild, A.; Friebe, C.; Haupler, B.; Janoschka, T.; Schubert, U. S. Polymer-based organic batteries. Chem. Rev. 2016, 116, 9438–9484.

    Article  Google Scholar 

  8. Shi, Y.; Peng, L. L.; Ding, Y.; Zhao, Y.; Yu, G. H. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 2015, 44, 6684–6696.

    Article  Google Scholar 

  9. Novák, P.; Müller, K.; Santhanam, K. S. V.; Haas, O. Electrochemically active polymers for rechargeable batteries. Chem. Rev. 1997, 97, 207–282.

    Article  Google Scholar 

  10. Ohzuku, T.; Brodd, R. J. An overview of positive-electrode materials for advanced lithium-ion batteries. J. Power Sources 2007, 174, 449–456.

    Article  Google Scholar 

  11. Liang, Y. L.; Zhang, P.; Chen, J. Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chem. Sci. 2013, 4, 1330–1337.

    Article  Google Scholar 

  12. Wu, H. P.; Shevlin, S. A.; Meng, Q. H.; Guo, W.; Meng, Y. N.; Lu, K.; Wei, Z. X.; Guo, Z. X. Flexible and binder-free organic cathode for high-performance lithium-ion batteries. Adv. Mater. 2014, 26, 3338–3343.

    Article  Google Scholar 

  13. Oyaizu, K.; Hatemata, A.; Choi, W.; Nishide, H. Redox-active polyimide/carbon nanocomposite electrodes for reversible charge storage at negative potentials: Expanding the functional horizon of polyimides. J. Mater. Chem. 2010, 20, 5404–5410.

    Article  Google Scholar 

  14. Chopin, S.; Chaignon, F.; Blart, E.; Odobel, F. Syntheses and properties of core-substituted naphthalene bisimides with aryl ethynyl or cyano groups. J. Mater. Chem. 2007, 17, 4139–4146.

    Article  Google Scholar 

  15. Song, Z. P.; Zhan, H.; Zhou, Y. H. Polyimides: Promising energy-storage materials. Angew. Chem., Int. Ed. 2010, 49, 8444–8448.

    Article  Google Scholar 

  16. Zhang, C.; Lu, C. B.; Zhang, F.; Qiu, F.; Zhuang, X. D.; Feng, X. L. Two-dimensional organic cathode materials for alkali-metal-ion batteries. J. Energy Chem. 2018, 27, 86–98.

    Article  Google Scholar 

  17. Dong, X. L.; Chen, L.; Liu, J. Y.; Haller, S.; Wang, Y. G.; Xia, Y. Y. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci. Adv. 2016, 2, e1501038.

    Article  Google Scholar 

  18. Peng, S. J.; Li, L. L.; Kong Yoong Lee, J.; Tian, L. L.; Srinivasan, M.; Adams, S.; Ramakrishna, S. Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy 2016, 22, 361–395.

    Article  Google Scholar 

  19. Xu, Y. H.; Zhu, Y. J.; Han, F. D.; Luo, C.; Wang, C. S. 3D Si/C fiber paper electrodes fabricated using a combined electrospray/electrospinning technique for Li-ion batteries. Adv. Energy Mater. 2015, 5, 1400753.

    Article  Google Scholar 

  20. Zhang, P.; Shao, C. L.; Zhang, Z. Y.; Zhang, M. Y.; Mu, J. B.; Guo, Z. C.; Liu, Y. C. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale 2011, 3, 3357–3363.

    Article  Google Scholar 

  21. Li, B.; Yang, S. B.; Li, S. M.; Wang, B.; Liu, J. H. From commercial sponge toward 3D graphene-silicon networks for superior lithium storage. Adv. Energy Mater. 2015, 5, 1500289.

    Article  Google Scholar 

  22. Kim, S. J.; Kim, M. C.; Han, S. B.; Lee, G. H.; Choe, H. S.; Kwak, D. H.; Choi, S. Y.; Son, B. G.; Shin, M. S.; Park, K. W. 3D flexible Si based-composite (Si@Si3N4)/CNF electrode with enhanced cyclability and high rate capability for lithium-ion batteries. Nano Energy 2016, 27, 545–553.

    Article  Google Scholar 

  23. Li, Q. T.; Yang, X. J.; Chen, W. Q.; Yi, C. F.; Xu, Z. S. Preparation of poly(amic acid) and polyimide via microwave-assisted polycondensation of aromatic dianhydrides and diamines. Macromol. Symp. 2008, 261, 148–156.

    Article  Google Scholar 

  24. Wang, H. J.; Wang, T. P.; Yang, S. Y.; Fan, L. Preparation of thermal stable porous polyimide membranes by phase inversion process for lithium-ion battery. Polymer 2013, 54, 6339–6348.

    Article  Google Scholar 

  25. Snyder, R. W.; Thomson, B.; Bartges, B.; Czerniawski, D.; Painter, P. C. FTIR studies of polyimides: Thermal curing. Macromolecules 1989, 22, 4166–4172.

    Article  Google Scholar 

  26. Zhang, B.; Yu, Y.; Huang, Z. D.; He, Y. B.; Jang, D.; Yoon, W. S.; Mai, Y. W.; Kang, F.; Kim, J. K. Exceptional electrochemical performance of freestanding electrospun carbon nanofiber anodes containing ultrafine SnOx particles. Energy Environ. Sci. 2012, 5, 9895–9902.

    Article  Google Scholar 

  27. Song, Z. P.; Xu, T.; Gordin, M. L.; Jiang, Y. B.; Bae, I. T.; Xiao, Q. F.; Zhan, H.; Liu, J.; Wang, D. H. Polymer-graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries. Nano Lett. 2012, 12, 2205–2211.

    Article  Google Scholar 

  28. Cañas, N. A.; Hirose, K.; Pascucci, B.; Wagner, N.; Friedrich, K. A.; Hiesgen, R. Investigations of lithium-sulfur batteries using electrochemical impedance spectroscopy. Electrochim. Acta 2013, 97, 42–51.

    Article  Google Scholar 

  29. Han, X.; Chang, C.; Yuan, L.; Sun, T.; Sun, J. Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials. Adv. Mater. 2007, 19, 1616–1621.

    Article  Google Scholar 

  30. Han, X. Y.; Qing, G. Y.; Sun, J. T.; Sun, T. L. How many lithium ions can be inserted onto fused C6 aromatic ring systems? Angew. Chem., Int. Ed. 2012, 51, 5147–5151.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the “Strategic Priority Research Program” of the CAS (No. XDA09010600) and the National Natural Science Foundation of China (Nos. 21473242, 21625304 and 21733012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanbin Shen or Liwei Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Kang, T., Chu, Y. et al. A polyimide cathode with superior stability and rate capability for lithium-ion batteries. Nano Res. 12, 1355–1360 (2019). https://doi.org/10.1007/s12274-019-2306-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2306-y

Keywords

Navigation