Skip to main content
Log in

Nanorattle Au@PtAg encapsulated in ZIF-8 for enhancing CO2 photoreduction to CO

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Imidazolate-based ZIF-8 catalysts M@ZIF-8 (M = Au NR, Au@Ag NR, or Au@PtAg NRT; NR = nanorod, NRT = nanorattle), were assembled. Au NRs acted as the core for the epitaxial growth of the Ag shell, and oxidative etching of Au@Ag NRs led to Au@PtAg NRTs with K2PtCl4 aqueous solution. All metal nanorods (MNRs) and metal nanorattles (MNRTs) were well dispersed and fully encapsulated in ZIF-8. Au@PtAg NRTs encapsulated in ZIF-8 could lead to enhanced stability and selectivity for catalytic applications, combining the advantages of ZIF-8 (tailorable porosity) with the high surface area and improved optical sensitivity of rod-shaped NRTs. The catalyst Au@PtAg@ZIF-8 exhibited efficient catalytic activity and CO selectivity for the gas-phase photoreduction of CO2 with H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng, G. C.; de Marchi, S.; López-Puente, V.; Sentosun, K.; Polavarapu, L.; Pérez-Juste, I.; Hill, E. H.; Bals, S.; Liz-Marzán, L. M.; Pastoriza-Santos, I. et al. Encapsulation of single plasmonic nanoparticles within ZIF-8 and SERS analysis of the MOF flexibility. Small 2016, 12, 3935–3943.

    Article  Google Scholar 

  2. Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metalorganic framework material by controlled nanoparticle encapsulation. Nature Chem. 2012, 4, 310–316.

    Article  Google Scholar 

  3. Liu, Y. L.; Tang, Z. Y. Multifunctional nanoparticle@MOF core-shell nanostructures. Adv. Mater. 2013, 25, 5819–5825.

    Article  Google Scholar 

  4. Long, Y. K.; Xiao, L.; Cao, Q. H.; Shi, X. W.; Wang, Y. N. Efficient incorporation of diverse components into metal organic frameworks via metal phenolic networks. Chem. Commun. 2017, 53, 10831–10834.

    Article  Google Scholar 

  5. Zeng, M.; Chai, Z. G.; Deng, X.; Li, Q.; Feng, S. Q.; Wang, J.; Xu, D. S. Core–shell CdS@ZIF-8 structures for improved selectivity in photocatalytic H2 generation from formic acid. Nano Res. 2016, 9, 2729–2734.

    Article  Google Scholar 

  6. Chen, L. Y.; Luque, R.; Li, Y. W. Controllable design of tunable nanostructures inside metal-organic frameworks. Chem. Soc. Rev. 2017, 46, 4614–4630.

    Article  Google Scholar 

  7. Zheng, G. C.; Chen, Z. W.; Sentosun, K.; Pérez-Juste, I.; Bals, S.; Liz-Marzán, L. M.; Pastoriza-Santos, I.; Pérez-Juste, J.; Hong, M. Shape control in ZIF-8 nanocrystals and metal nanoparticles@ZIF-8 heterostructures. Nanoscale 2017, 9, 16645–16651.

    Article  Google Scholar 

  8. Ahmed, I.; Jhung, S. H. Composites of metal–organic frameworks: Preparation and application in adsorption. Mater. Today 2014, 17, 136–146.

    Article  Google Scholar 

  9. Lin, L.; Liu, H. O.; Zhang, X. F. ZnO-template synthesis of rattle-type catalysts with supported Pd nanoparticles encapsulated in hollow ZIF-8 for liquid hydrogenation. Chem. Eng. J. 2017, 328, 124–132.

    Article  Google Scholar 

  10. Hu, Y. L.; Liao, J.; Wang, D. M.; Li, G. K. Fabrication of gold nanoparticleembedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Anal. Chem. 2014, 86, 3955–3963.

    Article  Google Scholar 

  11. Sun, D. R.; Li, Z. H. Double-solvent method to Pd nanoclusters encapsulated inside the cavity of NH2–Uio-66(Zr) for efficient visible-light-promoted suzuki coupling reaction. J. Phys. Chem. C 2016, 120, 19744–19750.

    Article  Google Scholar 

  12. Férey, G.; Latroche, M.; Serre, C.; Millange, F.; Loiseau, T.; Percheron-Guégan, A. Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C–C6H4–CO2) (M = Al3+, Cr3+), MIL-53. Chem. Commun. 2003, 2976–2977.

    Google Scholar 

  13. Kitaura, R.; Fujimoto, K.; Noro, S. I.; Kondo, M.; Kitagawa, S. A pillared-layer coordination polymer network displaying hysteretic sorption: [Cu2(pzdc)2(dpyg)]n (pzdc = pyrazine-2,3-dicarboxylate; dpyg = 1, 2-di(4- pyridyl)glycol). Angew. Chem., Int. Ed. 2002, 41, 133–135.

    Article  Google Scholar 

  14. Foo, M. L.; Matsuda, R.; Kitagawa, S. Functional hybrid porous coordination polymers. Chem. Mater. 2014, 26, 310–322.

    Article  Google Scholar 

  15. Zhou, H.; Li, P.; Liu, J.; Chen, Z. P.; Liu, L. Q.; Dontsova, D.; Yan, R. Y.; Fan, T. X.; Zhang, D.; Ye, J. H. Biomimetic polymeric semiconductor based hybrid nanosystems for artificial photosynthesis towards solar fuels generation via CO2 reduction. Nano Energy 2016, 25, 128–135.

    Article  Google Scholar 

  16. Doherty, C. M.; Buso, D.; Hill, A. J.; Furukawa, S.; Kitagawa, S.; Falcaro, P. Using functional nano- and microparticles for the preparation of metal–organic framework composites with novel properties. Acc. Chem. Res. 2014, 47, 396–405.

    Article  Google Scholar 

  17. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.

    Article  Google Scholar 

  18. Yurtsever, H. A.; Akgunlu, M. Y.; Kurt, T.; Yurttaş, A. S.; Topuz, B. Photocatalytic activities of Ag+ doped ZIF-8 and ZIF-L crystals. JOTCSA. 2016, 3, 265–280.

    Google Scholar 

  19. Fu, Y. H.; Sun, D. R.; Chen, Y. J.; Huang, R. K.; Ding, Z. X.; Fu, X. Z.; Li, Z. H. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem., Int. Ed. 2012, 51, 3364–3367.

    Article  Google Scholar 

  20. Lykourinou, V.; Chen, Y.; Wang, X. S.; Meng, L.; Hoang, T.; Ming, L. J.; Musselman, R. L.; Ma, S. Q. Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF: A new platform for enzymatic catalysis. J. Am. Chem. Soc. 2011, 133, 10382–10385.

    Article  Google Scholar 

  21. Wang, C.; de Krafft, K. E.; Lin, W. B. Pt nanoparticles@photoactive metal-organic frameworks: Efficient hydrogen evolution via synergistic photoexcitation and electron injection. J. Am. Chem. Soc. 2012, 134, 7211–7214.

    Article  Google Scholar 

  22. Kuo, C. H.; Tang, Y.; Chou, L. Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z. P.; Tsung, C. K. Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. J. Am. Chem. Soc. 2012, 134, 14345–14348.

    Article  Google Scholar 

  23. Dhakshinamoorthy, A.; Garcia, H. Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chem. Soc. Rev. 2012, 41, 5262–5284.

    Article  Google Scholar 

  24. Sugikawa, K.; Nagata, S.; Furukawa, Y.; Kokado, K.; Sada, K. Stable and functional gold nanorod composites with a metal–organic framework crystalline shell. Chem. Mater. 2013, 25, 2565–2570.

    Article  Google Scholar 

  25. Liu, Y. Y.; Zhang, W. N.; Li, S. Z.; Cui, C. L.; Wu, J.; Chen, H. Y.; Huo, F. W. Designable yolk–shell nanoparticle@MOF petalous heterostructures. Chem. Mater. 2014, 26, 1119–1125.

    Article  Google Scholar 

  26. Na, K.; Choi, K. M.; Yaghi, O. M.; Somorjai, G. A. Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. Nano Lett. 2014, 14, 5979–5983.

    Article  Google Scholar 

  27. Sugikawa, K.; Furukawa, Y.; Sada, K. SERS-active metal–organic frameworks embedding gold nanorods. Chem. Mater. 2011, 23, 3132–3134.

    Article  Google Scholar 

  28. Lingampalli, S. R.; Ayyub, M. M.; Rao, C. N. R. Recent progress in the photocatalytic reduction of carbon dioxide. ACS Omega 2017, 2, 2740–2748.

    Article  Google Scholar 

  29. Zhai, Q. G.; Xie, S. J.; Fan, W. Q.; Zhang, Q. H.; Wang, Y.; Deng, W. P.; Wang, Y. Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(I) oxide co-catalysts with a core-shell structure. Angew. Chem., Int. Ed. 2013, 52, 5776–5779.

    Article  Google Scholar 

  30. In, S. I.; Vaughn II, D. D.; Schaak, R. E. Hybrid CuO-TiO2–XNX hollow nanocubes for photocatalytic conversion of CO2 into methane under solar irradiation. Angew. Chem., Int. Ed. 2012, 124, 3981–3984.

    Article  Google Scholar 

  31. Liu, Q.; Low, Z. X.; Li, L. X.; Razmjou, A.; Wang, K.; Yao, J. F.; Wang, H. T. ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. J. Mater. Chem. A 2013, 1, 11563–11569.

    Article  Google Scholar 

  32. Li, R.; Hu, J. H.; Deng, M. S.; Wang, H. L.; Wang, X. J.; Hu, Y. L.; Jiang, H. L.; Jiang, J.; Zhang, Q.; Xie, Y. et al. Integration of an inorganic semiconductor with a metal-organic framework: A platform for enhanced gaseous photocatalytic reactions. Adv. Mater. 2014, 26, 4783–4788.

    Article  Google Scholar 

  33. Xie, S. J.; Wang, Y.; Zhang, Q. H.; Deng, W. P.; Wang, Y. MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catal. 2014, 4, 3644–3653.

    Article  Google Scholar 

  34. Wang, K. F.; Zhang, L.; Su, Y.; Shao, D. K.; Zeng, S. W.; Wang, W. Z. Photoreduction of carbon dioxide of atmospheric concentration to methane with water over CoAl-layered double hydroxide nanosheets. J. Mater. Chem. A 2018, 6, 8366–8373.

    Article  Google Scholar 

  35. Dong, C. Y.; Lian, C.; Hu, S. C.; Deng, Z. S.; Gong, J. Q.; Li, M. D.; Liu, H. L.; Xing, M. Y.; Zhang, J. L. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 2018, 9, 1252.

    Article  Google Scholar 

  36. He, T.; Chen, S. M.; Ni, B.; Gong, Y.; Wu, Z.; Song, L.; Gu, L.; Hu, W. P.; Wang, X. Zirconium–porphyrin-based metal–organic framework hollow nanotubes for immobilization of noble-metal single atoms. Angew. Chem., Int. Ed. 2018, 130, 3551–3556.

    Article  Google Scholar 

  37. Zhang, H. B.; Wei, J.; Dong, J. C.; Liu, G. G.; Shi, L.; An, P. F.; Zhao, G. X.; Kong, J. T.; Wang, X. J.; Meng, X. G. et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem., Int. Ed. 2016, 55, 14310–14314.

    Article  Google Scholar 

  38. Chen, M. M.; Han, L.; Zhou, J.; Sun, C. Y; Hu, C. Y.; Wang, X. L.; Su, Z. M. Photoreduction of carbon dioxide under visible light by ultra-small Ag nanoparticles doped into Co-ZIF-9. Nanotechnology 2018, 29, 284003.

    Article  Google Scholar 

  39. Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

    Article  Google Scholar 

  40. Kumar, B.; Llorente, M.; Froehlich, J.; Dang, T.; Sathrum, A.; Kubiak, C. P. Photochemical and photoelectrochemical reduction of CO2. Annu. Rev. Phys. Chem. 2012, 63, 541–569.

    Article  Google Scholar 

  41. Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H. Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci. 2012, 5, 9217.

    Article  Google Scholar 

  42. Mori, K.; Yamashita, H.; Anpo, M. Photocatalytic reduction of CO2 with H2O on various titanium oxide photocatalysts. RSC Advances 2012, 2, 3165.

    Article  Google Scholar 

  43. Tahir, M.; Tahir, B.; Amin, N. A. S. Synergistic effect in plasmonic Au/Ag alloy NPs co-coated TiO2 NWs toward visible-light enhanced CO2 photoreduction to fuels. Appl. Catal. B 2017, 204, 548–560.

    Article  Google Scholar 

  44. Zhu, W.; Liu, P. J.; Xiao, S. N.; Wang, W. C.; Zhang, D. Q.; Li, H. X. Microwave-assisted synthesis of Ag-doped MOFs-like organotitanium polymer with high activity in visible-light driven photocatalytic NO oxidization. Appl. Catal. B: Envion 2015, 172–173, 46–51.

    Article  Google Scholar 

  45. Yu, S. J.; Wilson, A. J.; Kumari, G.; Zhang, X. Q.; Jain, P. K. Opportunities and challenges of solar-energy-driven carbon dioxide to fuel conversion with plasmonic catalysts. ACS Energy Lett. 2017, 2, 2058–2070.

    Article  Google Scholar 

  46. Yu, S. J.; Wilson, A. J.; Heo, J.; Jain, P. K. Plasmonic control of multielectron transfer and C–C coupling in visible-light-driven CO2 reduction on Au nanoparticles. Nano Lett. 2018, 18, 2189–2194.

    Article  Google Scholar 

  47. Wang, W. N.; An, W. J.; Ramalingam, B.; Mukherjee, S.; Niedzwiedzki, D. M.; Gangopadhyay, S.; Biswas, P. Size and structure matter: Enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. Soc. 2012, 134, 11276–11281.

    Article  Google Scholar 

  48. Zhu, W.; Chen, Z.; Pan, Y.; Dai, R. Y.; Wu, Y.; Zhuang, Z. B.; Wang, D. S.; Peng, Q.; Chen, C.; Li, Y. D. Functionalization of hollow nanomaterials for catalytic applications: Nanoreactor construction. Adv. Mater., in press, DOI: 10.1002/adma.201800426.

  49. Park, J.; Wang, H. L.; Vara, M.; Xia, Y. N. Platinum cubic nanoframes with enhanced catalytic activity and durability toward oxygen reduction. ChemSusChem 2016, 9, 2855–2861.

    Article  Google Scholar 

  50. Xu, J. J.; Liu, J. W.; Che, R. C.; Liang, C. Y.; Cao, M. S.; Li, Y.; Liu, Z. W. Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells. Nanoscale 2014, 6, 5782–5790.

    Article  Google Scholar 

  51. Londono-Calderon, A.; Campos-Roldan, C. A.; González-Huerta, R. G.; Hernandez-Pichardo, M. L.; del Angel, P.; Yacaman, M. J. Influence of the architecture of Au–Ag–Pt nanoparticles on the electrocatalytic activity for hydrogen evolution reaction. Int. J. Hydrogen Energy 2017, 42, 30208–30215.

    Article  Google Scholar 

  52. Yan, N.; Chen, Q. W.; Wang, F.; Wang, Y.; Zhong, H.; Hu, L. High catalytic activity for CO oxidation of Co3O4 nanoparticles in SiO2 nanocapsules. J. Mater. Chem. A 2013, 1, 637–643.

    Article  Google Scholar 

  53. Mehdinia, A.; Jebeliyan, M.; Kayyal, T. B.; Jabbari, A. Rattle-type Fe3O4@SnO2 core-shell nanoparticles for dispersive solid-phase extraction of mercury Ions. Microchim. Acta 2016, 184, 707–713.

    Article  Google Scholar 

  54. Zhou, J. B.; Tang, C.; Cheng, B.; Yu, J. G.; Jaroniec, M. Rattle-type carbon-alumina core-shell spheres: Synthesis and application for adsorption of organic dyes. ACS Appl. Mater. Interfaces 2012, 4, 2174–2179.

    Article  Google Scholar 

  55. El-Toni, A. M.; Habila, M. A.; Labis, J. P.; ALOthman, Z. A.; Alhoshan, M.; Elzatahry, A. A.; Zhang, F. Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures. Nanoscale 2016, 8, 2510–2531.

    Article  Google Scholar 

  56. Wang, M. W.; Boyjoo, Y.; Pan, J.; Wang, S. B.; Liu, J. Advanced yolk-shell nanoparticles as nanoreactors for energy conversion. Chin. J. Catal. 2017, 38, 970–990.

    Article  Google Scholar 

  57. Park, J. C.; Song, H. Metal@silica yolk-shell nanostructures as versatile bifunctional nanocatalysts. Nano Res. 2010, 4, 33–49.

    Article  Google Scholar 

  58. Liu, K. K.; Tadepalli, S.; Tian, L. M.; Singamaneni, S. Size-dependent surface enhanced Raman scattering activity of plasmonic nanorattles. Chem. Mater. 2015, 27, 5261–5270.

    Article  Google Scholar 

  59. Cui, Z. M.; Chen, Z.; Cao, C. Y.; Jiang, L.; Song, W. G. A yolk–shell structured Fe2O3@mesoporous SiO2 nanoreactor for enhanced activity as a Fenton catalyst in total oxidation of dyes. Chem. Commun. 2013, 49, 2332–2334.

    Article  Google Scholar 

  60. Hu, K. W.; Liu, T. M.; Chung, K. Y.; Huang, K. S.; Hsieh, C. T.; Sun, C. K.; Yeh, C. S. Efficient near-IR hyperthermia and intense nonlinear optical imaging contrast on the gold nanorod-in-shell nanostructures. J. Am. Chem. Soc. 2009, 131, 14186–14187.

    Article  Google Scholar 

  61. Khalavka, Y.; Becker, J.; Sönnichsen, C. Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity. J. Am. Chem. Soc. 2009, 131, 1871–1875.

    Article  Google Scholar 

  62. Cobley, C. M.; Xia, Y. N. Engineering the properties of metal nanostructures via galvanic replacement reactions. Mater. Sci. Eng. R 2010, 70, 44–62.

    Article  Google Scholar 

  63. Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

    Article  Google Scholar 

  64. Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Ligand-directed strategy for zeolite-type metal–organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem., Int. Ed. 2006, 118, 1587–1589.

    Article  Google Scholar 

  65. Manna, K.; Zhang, T.; Greene, F. X.; Lin, W. B. Bipyridine- and phenanthroline-based metal–organic frameworks for highly efficient and tandem catalytic organic transformations via directed C–H activation. J. Am. Chem. Soc. 2015, 137, 2665–2673.

    Article  Google Scholar 

  66. Zhang, H. B.; Ma, Z. J.; Liu, G. G.; Shi, L.; Tang, J.; Pang, H.; Wu, K. C.; Takei, T.; Zhang, J.; Yamauchi, Y. et al. Highly active nonprecious metal hydrogen evolution electrocatalyst: Ultrafine molybdenum carbide nanoparticles embedded into a 3D nitrogen-implanted carbon matrix. NPG Asia Mater. 2016, 8, e293.

    Article  Google Scholar 

  67. Mankidy, B. D.; Joseph, B.; Gupta, V. K. Photo-conversion of CO2 using titanium dioxide: Enhancements by plasmonic and co-catalytic nanoparticles. Nanotechnology 2013, 24, 405402.

    Article  Google Scholar 

  68. Wang, S. B.; Guan, B. Y.; Lu, Y.; Wen, X.; Lou, D. Formation of hierarchical In2S3–CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction. J. Am. Chem. Soc. 2017, 139, 17305–17308.

    Article  Google Scholar 

  69. Feng, L. L.; Wu, X. C.; Ren, L. R.; Xiang, Y. J.; He, W. W.; Zhang, K.; Zhou, W. Y.; Xie, S. S. Well-controlled synthesis of Au@Pt nanostructures by gold-nanorod-seeded growth. Chem.—Eur. J. 2008, 14, 9764–9771.

    Article  Google Scholar 

  70. Sun, H. Y.; Guo, X.; Ye, W.; Kou, S. F.; Yang, J. Charge transfer accelerates galvanic replacement for PtAgAu nanotubes with enhanced catalytic activity. Nano Res. 2016, 9, 1173–1181.

    Article  Google Scholar 

  71. Wu, X. K.; Zhao, Y. R.; Yang, C. Q.; He, G. F. PVP-assisted synthesis of shape-controlled CuFeS2 nanocrystals for Li-ion batteries. J. Mater. Sci. 2015, 50, 4250–4257.

    Article  Google Scholar 

  72. Koczkur, K. M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S. E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 2015, 44, 17883–17905.

    Article  Google Scholar 

  73. Zhou, J. J.; Wang, P.; Wang, C. X.; Goh, Y. T.; Fang, Z.; Messersmith, P. B.; Duan, H. W. Versatile core–shell nanoparticle@metal–organic framework nanohybrids: Exploiting mussel-inspired polydopamine for tailored structural integration. ACS Nano 2015, 9, 6951–6960.

    Article  Google Scholar 

  74. Zhou, H.; Guo, J. J.; Li, P.; Fan, T. X.; Zhang, D.; Ye, J. H. Leafarchitectured 3D hierarchical artificial photosynthetic system of perovskite titanates towards CO2 photoreduction into hydrocarbon fuels. Sci. Rep. 2013, 3, 1667.

    Article  Google Scholar 

  75. Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196.

    Article  Google Scholar 

  76. Kočí, K.; Obalová, L.; Matějová, L.; Plachá, D.; Lacný, Z.; Jirkovský, J.; Šolcová, O. Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl. Catal. B: Environ. 2009, 89, 494–502.

    Article  Google Scholar 

  77. Tan, S. S.; Zou, L. D.; Hu, E. Kinetic modelling for photosynthesis of hydrogen and methane through catalytic reduction of carbon dioxide with water vapour. Catal. Today 2008, 131, 125–129.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21371058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Xu, H., Wang, J. et al. Nanorattle Au@PtAg encapsulated in ZIF-8 for enhancing CO2 photoreduction to CO. Nano Res. 12, 625–630 (2019). https://doi.org/10.1007/s12274-018-2269-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2269-4

Keywords

Navigation