Skip to main content
Log in

Nanomaterial-based optical indicators: Promise, opportunities, and challenges in the development of colorimetric systems for intelligent packaging

Nano Research Aims and scope Submit manuscript

Abstract

The market and the future trends of smart packaging show a tendency towards a continuous increase. Several reports have revealed about the increase of consumer concern for food quality and safety, which gives rise to the demand of intelligent packaging. Nano-enabled food packaging has attracted considerable interest and driven a variety of potential applications in the intelligent packaging. The presence of nanomaterials as nanodevices or nanosensors has been recognized as a part of the modern intelligent packaging for monitoring the condition of packaged food or the environment surrounding the product. Among of nanosensors, optical indicator has been widely applied in the market due to the convenient and easy to use. The utilization of nanomaterial such as metal nanoparticles or photonic nanocrystals shows superior performance in novel communicative functions than the traditional colorimetric indicator because of their unique optical properties and high surface reactivity. This review focuses exclusively on ongoing scientific research and recent technological breakthroughs related to nanotechnology-derived colorimetric indicators. The challenges of their application are highlighted and discussed to provide adequate information for future development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Silayoi, P.; Speece, M. The importance of packaging attributes: A conjoint analysis approach. Eur. J. Mark. 2007, 41, 1495–1517.

    Google Scholar 

  2. Prendergast, G.; Pitt, L. Packaging, marketing, logistics and the environment: Are there trade-offs? Int. J. Phys. Distrib. Logist. Manage. 1996, 26, 60–72.

    Google Scholar 

  3. Yam, K. L.; Takhistov, P. T.; Miltz, J. Intelligent packaging: Concepts and applications. J. Food Sci. 2005, 70, R1–R10.

    Google Scholar 

  4. Dainelli, D.; Gontard, N.; Spyropoulos, D.; Zondervan-van den Beuken, E.; Tobback, P. Active and intelligent food packaging: Legal aspects and safety concerns. Trends Food Sci. Technol. 2008, 19, S103–S112.

    Google Scholar 

  5. Brockgreitens, J.; Abbas, A. Responsive food packaging: Recent progress and technological prospects. Compr. Rev. Food Sci. Food Saf. 2016, 15, 3–15.

    Google Scholar 

  6. Biji, K. B.; Ravishankar, C. N.; Mohan, C. O.; Srinivasa Gopal, T. K. Smart packaging systems for food applications: A review. J. Food Sci. Technol. 2015, 52, 6125–6135.

    Google Scholar 

  7. Vanderroost, M.; Ragaert, P.; Devlieghere, F.; De Meulenaer, B. Intelligent food packaging: The next generation. Trends Food Sci. Technol. 2014, 39, 47–62.

    Google Scholar 

  8. Ghaani, M.; Cozzolino, C. A.; Castelli, G.; Farris, S. An overview of the intelligent packaging technologies in the food sector. Trends Food Sci. Technol. 2016, 51, 1–11.

    Google Scholar 

  9. Kerry, J.; Butler, P. Smart Packaging Technologies for Fast Moving Consumer Goods; John Wiley & Sons: West Sussex, UK, 2008.

    Google Scholar 

  10. Mihindukulasuriya, S. D. F.; Lim, L. T. Nanotechnology development in food packaging: A review. Trends Food Sci. Technol. 2014, 40, 149–167.

    Google Scholar 

  11. Bumbudsanpharoke, N.; Choi, J.; Ko, S. Applications of nanomaterials in food packaging. J. Nanosci. Nanotechnol. 2015, 15, 6357–6372.

    Google Scholar 

  12. Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed, M. A. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2007, 2, 107–118.

    Google Scholar 

  13. Banerjee, T.; Shelby, T.; Santra, S. How can nanosensors detect bacterial contamination before it ever reaches the dinner table? Future Microbiol. 2017, 12, 97–100.

    Google Scholar 

  14. Gram, L.; Ravn, L.; Rasch, M.; Bruhn, J. B.; Christensen, A. B.; Givskov, M. Food spoilage—Interactions between food spoilage bacteria. Int. J. Food Microbiol. 2002, 78, 79–97.

    Google Scholar 

  15. Gram, L.; Dalgaard, P. Fish spoilage bacteria—Problems and solutions. Curr. Opin. Biotechnol. 2002, 13, 262–266.

    Google Scholar 

  16. Fellows, P. J. Food Processing Technology: Principles and Practice; Woodhead Publishing: Cambridge, UK, 2009.

    Google Scholar 

  17. Zhang, Y. P.; Chodavarapu, V. P.; Kirk, A. G.; Andrews, M. P. Structured color humidity indicator from reversible pitch tuning in self-assembled nanocrystalline cellulose films. Sens. Actuators B: Chem. 2013, 176, 692–697.

    Google Scholar 

  18. Fuertes, G.; Soto, I.; Vargas, M.; Valencia, A.; Sabattin, J.; Carrasco, R. Nanosensors for a monitoring system in intelligent and active packaging. J. Sens. 2016, 2016, 7980476.

    Google Scholar 

  19. Puligundla, P.; Jung, J.; Ko, S. Carbon dioxide sensors for intelligent food packaging applications. Food Control 2012, 25, 328–333.

    Google Scholar 

  20. Jang, N. Y.; Won, K. New pressure-activated compartmented oxygen indicator for intelligent food packaging. Int. J. Food Sci. Technol. 2014, 49, 650–654.

    Google Scholar 

  21. Mills, A. Oxygen indicators and intelligent inks for packaging food. Chem. Soc. Rev. 2005, 34, 1003–1011.

    Google Scholar 

  22. Bridgeman, D.; Corral, J.; Quach, A.; Xian, X. J.; Forzani, E. Colorimetric humidity sensor based on liquid composite materials for the monitoring of food and pharmaceuticals. Langmuir 2014, 30, 10785–10791.

    Google Scholar 

  23. Ye, M. M.; Qian, C. X.; Sun, W.; He, L.; Jia, J.; Dong, Y. C.; Zhou, W. J. Correction: Dye colour switching by hydride-terminated silicon particles and its application as an oxygen indicator. J. Mater. Chem. C 2016, 4, 4600.

    Google Scholar 

  24. Vu, C. H. T.; Won, K. Leaching-resistant carrageenan-based colorimetric oxygen indicator films for intelligent food packaging. J. Agric. Food Chem. 2014, 62, 7263–7267.

    Google Scholar 

  25. Realini, C. E.; Marcos, B. Active and intelligent packaging systems for a modern society. Meat Sci. 2014, 98, 404–419.

    Google Scholar 

  26. Mills, A.; Grosshans, P.; Hazafy, D. A novel reversible relative-humidity indicator ink based on methylene blue and urea. Analyst 2010, 135, 33–35.

    Google Scholar 

  27. Saha, A.; Tanaka, Y.; Han, Y.; Bastiaansen, C. M. W.; Broer, D. J.; Sijbesma, R. P. Irreversible visual sensing of humidity using a cholesteric liquid crystal. Chem. Commun. 2012, 48, 4579–4581.

    Google Scholar 

  28. Ishizaki, R.; Katoh, R. Fast-response humidity-sensing films based on methylene blue aggregates formed on nanoporous semiconductor films. Chem. Phys. Lett. 2016, 652, 36–39.

    Google Scholar 

  29. Naydenova, I.; Jallapuram, R.; Toal, V.; Martin, S. Characterisation of the humidity and temperature responses of a reflection hologram recorded in acrylamide-based photopolymer. Sens. Actuators B: Chem. 2009, 139, 35–38.

    Google Scholar 

  30. Uryu, Y.; Uno, T.; Itoh, T.; Kubo, M. A ternary composite based on polystyrene sulphonic acid, organic dye and hygroscopic inorganic salt for cobalt-free humidity indicating agent. Mater. Res. Innovations 2017, 21, 331–335.

    Google Scholar 

  31. Dick, S. O.; Robertson, A. J.; Martin, M. B. Irreversible humidity indicator cards. U.S. Patent 6,877,457B1, April 12, 2005.

    Google Scholar 

  32. Blinn, W. C. Button type package humidity indicator. U.S. Patent 2,716,338, August 30, 1955.

    Google Scholar 

  33. Knyrim, J.; Dick, S. Halogen and heavy metal-free humidity indicating composition and humidity indicator card containing the same. U.S. Patent 8,518,344B2, August 27, 2013.

    Google Scholar 

  34. Nakatsubo, K.; Fujisaki, M. Humidity indicator card. U.S. Patent D588,029, March 10, 2009.

    Google Scholar 

  35. Smolander, M. Freshness indicators for food packaging. In Smart Packaging Technologies for Fast Moving Consumer Goods; Kerry J.; Butler P., Eds.; John Wiley & Sons: West Sussex, UK, 2008; p 111.

    Google Scholar 

  36. Antonelli, M. L.; Curini, R.; Scricciolo, D.; Vinci, G. Determination of free fatty acids and lipase activity in milk: Quality and storage markers. Talanta 2002, 58, 561–568.

    Google Scholar 

  37. Pacquit, A.; Frisby, J.; Diamond, D.; Lau, K. T.; Farrell, A.; Quilty, B.; Diamond, D. Development of a smart packaging for the monitoring of fish spoilage. Food Chem. 2007, 102, 466–470.

    Google Scholar 

  38. Kuswandi, B.; Oktaviana, J. R.; Abdullah, A.; Heng, L. Y. A novel on-package sticker sensor based on methyl red for real-time monitoring of broiler chicken cut freshness. Packag. Technol. Sci. 2014, 27, 69–81.

    Google Scholar 

  39. Nopwinyuwong, A.; Trevanich, S.; Suppakul, P. Development of a novel colorimetric indicator label for monitoring freshness of intermediatemoisture dessert spoilage. Talanta 2010, 81, 1126–1132.

    Google Scholar 

  40. Lee, S. J.; Lee, S. Y.; Kim, G. D.; Kim, G. B.; Jin, S. K.; Hur, S. J. Effects of self-carbon dioxide-generation material for active packaging on pH, water-holding capacity, meat color, lipid oxidation and microbial growth in beef during cold storage. J. Sci. Food Agric. 2017, 97, 3642–3648.

    Google Scholar 

  41. Meng, X. P.; Lee, K.; Kang, T. Y.; Ko, S. An irreversible ripeness indicator to monitor the CO2 concentration in the headspace of packaged kimchi during storage. Food Sci. Biotechnol. 2015, 24, 91–97.

    Google Scholar 

  42. Morsy, M. K.; Zór, K.; Kostesha, N.; Alstrom, T. S.; Heiskanen, A.; El-Tanahi, H.; Sharoba, A.; Papkovsky, D.; Larsen, J.; Khalaf, H. et al. Development and validation of a colorimetric sensor array for fish spoilage monitoring. Food Control 2016, 60, 346–352.

    Google Scholar 

  43. Fuertes, G.; Soto, I.; Carrasco, R.; Vargas, M.; Sabattin, J.; Lagos, C. Intelligent packaging systems: Sensors and nanosensors to monitor food quality and safety. J. Sens. 2016, 2016, 40460611.

    Google Scholar 

  44. Taoukis, P. S. Application of time-temperature integrators for monitoring and management of perishable product quality in the cold chain. In Smart Packaging Technologies for Fast Moving Consumer Goods; Kerry J.; Butler P., Eds.; John Wiley & Sons; West Sussex, UK, 2008; p 61.

    Google Scholar 

  45. Kreyenschmidt, J.; Christiansen, H.; Hübner, A.; Raab, V.; Petersen, B. A novel photochromic time-temperature indicator to support cold chain management. Int. J. Food Sci. Technol. 2010, 45, 208–215.

    Google Scholar 

  46. Brizio, A. P. D. R.; Prentice, C. Use of smart photochromic indicator for dynamic monitoring of the shelf life of chilled chicken based products. Meat Sci. 2014, 96, 1219–1226.

    Google Scholar 

  47. Wang, S. D.; Liu, X. H.; Yang, M.; Zhang, Y.; Xiang, K. Y.; Tang, R. Review of time temperature indicators as quality monitors in food packaging. Packag. Technol. Sci. 2015, 28, 839–867.

    Google Scholar 

  48. Eustis, S.; El-Sayed, M. A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35, 209–217.

    Google Scholar 

  49. Haes, A. J.; Hall, W. P.; Chang, L.; Klein, W. L.; Van Duyne, R. P. A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer’s disease. Nano Lett. 2004, 4, 1029–1034.

    Google Scholar 

  50. Kvítek, O.; Siegel, J.; Hnatowicz, V.; Švorčík, V. Noble metal nanostructures influence of structure and environment on their optical properties. J. Nanomater. 2013, 2013, 111.

    Google Scholar 

  51. Jensen, T. R.; Malinsky, M. D.; Haynes, C. L.; Van Duyne, R. P. Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles. J. Phys. Chem. B 2000, 104, 10549–10556.

    Google Scholar 

  52. Hou, W. B.; Cronin, S. B. A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619.

    Google Scholar 

  53. Verma, M. S.; Rogowski, J. L.; Jones, L.; Gu, F. X. Colorimetric biosensing of pathogens using gold nanoparticles. Biotechnol. Adv. 2015, 33, 666–680.

    Google Scholar 

  54. Zhao, W. A.; Ali, M. M.; Aguirre, S. D.; Brook, M. A.; Li, Y. F. Paper-based bioassays using gold nanoparticle colorimetric probes. Anal. Chem. 2008, 80, 8431–8437.

    Google Scholar 

  55. Nath, N.; Chilkoti, A. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal. Chem. 2002, 74, 504–509.

    Google Scholar 

  56. Sung, Y. J.; Suk, H. J.; Sung, H. Y.; Li, T. H.; Poo, H.; Kim, M. G. Novel antibody/gold nanoparticle/magnetic nanoparticle nanocomposites for immunomagnetic separation and rapid colorimetric detection of Staphylococcus aureus in milk. Biosens. Bioelectron. 2013, 43, 432–439.

    Google Scholar 

  57. Fu, Z. Y.; Zhou, X. M.; Xing, D. Rapid colorimetric gene-sensing of food pathogenic bacteria using biomodification-free gold nanoparticle. Sens. Actuators B: Chem. 2013, 182, 633–641.

    Google Scholar 

  58. Paul, I. E.; Rajeshwari, A.; Alex, S. A.; Sangeetha, S.; Raichur, A. M.; Chandrasekaran, N.; Mukherjee, A. Label-free colorimetric detection of bacterial lipopolysaccharide in food samples using gold nanorods. Sensor Lett. 2016, 14, 19–25.

    Google Scholar 

  59. Lee, H. Y.; Park, H. K.; Lee, Y. M.; Kim, K.; Park, S. B. A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem. Commun. 2007, 28, 2959–2961.

    Google Scholar 

  60. Levard, C.; Hotze, E. M.; Colman, B. P.; Dale, A. L.; Truong, L.; Yang, X. Y.; Bone, A. J.; Brown, G. E.; Tanguay, R. L.; Di Giulio, R. T. et al. Sulfidation of silver nanoparticles: Natural antidote to their toxicity. Environ. Sci. Technol. 2013, 47, 13440–13448.

    Google Scholar 

  61. Jagtap, U. B.; Bapat, V. A. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. Seed extract and its antibacterial activity. Ind. Crops Prod. 2013, 46, 132–137.

    Google Scholar 

  62. Ravindran, A.; Chandran, P.; Khan, S. S. Biofunctionalized silver nanoparticles: Advances and prospects. Colloids Surf. B: Biointerfaces 2013, 105, 342–352.

    Google Scholar 

  63. Sachdev, D.; Kumar, V.; Maheshwari, P. H.; Pasricha, R.; Deepthi Baghel, N. Silver based nanomaterial, as a selective colorimetric sensor for visual detection of post harvest spoilage in onion. Sens. Actuators B: Chem. 2016, 228, 471–479.

    Google Scholar 

  64. Abargues, R.; Rodriguez-Canto, P. J.; Albert, S.; Suarez, I.; Martínez-Pastor, J. P. Plasmonic optical sensors printed from Ag–PVA nanoinks. J. Mater. Chem. C 2014, 2, 908–915.

    Google Scholar 

  65. Lakade, A. J.; Sundar, K.; Shetty, P. H. Nanomaterial-based sensor for the detection of milk spoilage. LWT 2017, 75, 702–709.

    Google Scholar 

  66. Taoukis, P.; Tsironi, T. Smart packaging for monitoring and managing food and beverage shelf life. In The Stability and Shelf-Life of Food; Subramaniam, P.; Wareing, P., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp 141–168.

    Google Scholar 

  67. Wu, S. H.; Chen, D. H. Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J. Colloid Interface Sci. 2004, 273, 165–169.

    Google Scholar 

  68. Sun, S. D.; Kong, C. C.; Deng, D. C.; Song, X. P.; Ding, B. J.; Yang, Z. M. Nanoparticle-aggregated octahedral copper hierarchical nanostructures. CrystEngComm 2011, 13, 63–66.

    Google Scholar 

  69. Luechinger, N. A.; Loher, S.; Athanassiou, E. K.; Grass, R. N.; Stark, W. J. Highly sensitive optical detection of humidity on polymer/metal nanoparticle hybrid films. Langmuir 2007, 23, 3473–3477.

    Google Scholar 

  70. Hatamie, A.; Zargar, B.; Jalali, A. Copper nanoparticles: A new colorimetric probe for quick, naked-eye detection of sulfide ions in water samples. Talanta 2014, 121, 234–238.

    Google Scholar 

  71. Qian, J.; Yang, X. W.; Jiang, L.; Zhu, C. D.; Mao, H. P.; Wang, K. Facile preparation of Fe3O4 nanospheres/reduced graphene oxide nanocomposites with high peroxidase-like activity for sensitive and selective colorimetric detection of acetylcholine. Sens. Actuators B: Chem. 2014, 201, 160–166.

    Google Scholar 

  72. Huang, X. W.; Li, Z. H.; Zou, X. B.; Shi, J. Y.; Mao, H. P.; Zhao, J. W.; Hao, L. M.; Holmes, M. Detection of meat-borne trimethylamine based on nanoporous colorimetric sensor arrays. Food Chem. 2016, 197, 930–936.

    Google Scholar 

  73. Gutiérrez-Tauste, D.; Domènech, X.; Casañ-Pastor, N.; Ayllón, J. A. Characterization of methylene blue/TiO2 hybrid thin films prepared by the liquid phase deposition (LPD) method: Application for fabrication of light-activated colorimetric oxygen indicators. J. Photochem. Photobiol. A: Chem. 2007, 187, 45–52.

    Google Scholar 

  74. Khan, S. B.; Hou, M. J.; Shuang, S.; Zhang, Z. J. Morphological influence of TiO2 nanostructures (nanozigzag, nanohelics and nanorod) on photocatalytic degradation of organic dyes. Appl. Surf. Sci. 2017, 400, 184–193.

    Google Scholar 

  75. Naskar, S.; Pillay, S. A.; Chanda, M. Photocatalytic degradation of organic dyes in aqueous solution with TiO2 nanoparticles immobilized on foamed polyethylene sheet. J. Photochem. Photobiol. A: Chem. 1998, 113, 257–264.

    Google Scholar 

  76. Pereira, L.; Pereira, R.; Oliveira, C. S.; Apostol, L.; Gavrilescu, M.; Pons, M. N.; Zahraa, O.; Alves, M. M. UV/TiO2 photocatalytic degradation of xanthene dyes. Photochem. Photobiol. 2013, 89, 33–39.

    Google Scholar 

  77. Daneshvar, N.; Salari, D.; Khataee, A. R. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol. A: Chem. 2004, 162, 317–322.

    Google Scholar 

  78. Chakrabarti, S.; Dutta, B. K. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. 2004, 112, 269–278.

    Google Scholar 

  79. Singh, R.; Barman, P. B.; Sharma, D. Synthesis, structural and optical properties of Ag doped ZnO nanoparticles with enhanced photocatalytic properties by photo degradation of organic dyes. J. Mater. Sci.: Mater. Electron. 2017, 28, 5705–5717.

    Google Scholar 

  80. Sharma, P.; Kumar, R.; Chauhan, S.; Singh, D.; Chauhan, M. S. Facile growth and characterization of α-Fe2O3 nanoparticles for photocatalytic degradation of methyl orange. J. Nanosci. Nanotechnol. 2014, 14, 6153–6157.

    Google Scholar 

  81. Cheng, M. M.; Ma, W. H.; Li, J.; Huang, Y. P.; Zhao, J. C. Visible-lightassisted degradation of dye pollutants over Fe(III)-loaded resin in the presence of H2O2 at neutral pH values. Environ. Sci. Technol. 2004, 38, 1569–1575.

    Google Scholar 

  82. Mazloom, J.; Ghodsi, F. E.; Zamani, H.; Golmojdeh, H. Relation between physical properties, enhanced photodegradation of organic dyes and antibacterial potential of Sn1–xSbxO2 nanoparticles. J. Mater. Sci.: Mater. Electron. 2017, 28, 2183–2192.

    Google Scholar 

  83. Tatsuma, T.; Tachibana, S. I.; Miwa, T.; Tryk, D. A.; Fujishima, A. Remote bleaching of methylene blue by UV-irradiated TiO2 in the gas phase. J. Phys. Chem. B 1999, 103, 8033–8035.

    Google Scholar 

  84. Wang, J.; Guo, Y. W.; Liu, B.; Jin, X. D.; Liu, L. J.; Xu, R.; Kong, Y. M.; Wang, B. X. Detection and analysis of reactive oxygen species (ROS) generated by nano-sized TiO2 powder under ultrasonic irradiation and application in sonocatalytic degradation of organic dyes. Ultrason. Sonochem. 2011, 18, 177–183.

    Google Scholar 

  85. Gupta, S. M.; Tripathi, M. A review of TiO2 nanoparticles. Chin. Sci. Bull. 2011, 56, 1639–1657.

    Google Scholar 

  86. Lawrie, K.; Mills, A.; Hazafy, D. Simple inkjet-printed, UV-activated oxygen indicator. Sens. Actuators B: Chem. 2013, 176, 1154–1159.

    Google Scholar 

  87. Son, E. J.; Lee, J. S.; Lee, M.; Vu, C. H. T.; Lee, H.; Won, K.; Park, C. B. Self-adhesive graphene oxide-wrapped TiO2 nanoparticles for UV-activated colorimetric oxygen detection. Sens. Actuators B: Chem. 2015, 213, 322–328.

    Google Scholar 

  88. Wang, W. S.; Ye, M. M.; He, L.; Yin, Y. D. Nanocrystalline TiO2-catalyzed photoreversible color switching. Nano Lett. 2014, 14, 1681–1686.

    Google Scholar 

  89. Ornatska, M.; Sharpe, E.; Andreescu, D.; Andreescu, S. Paper bioassay based on ceria nanoparticles as colorimetric probes. Anal. Chem. 2011, 83, 4273–4280.

    Google Scholar 

  90. Neal, C. Fabrication and investigation of an enzyme-free, nanoparticle-based biosensor for hydrogen peroxide determination. Master Degree Thesis, University of Central Florida, Florida, USA, 2016.

    Google Scholar 

  91. Andreescu, E. S.; Ornatska, M.; Ispas, C. R.; Andreescu, D. Reagentless ceria-based colorimetric sensor. U.S. Patent 8,691,520B2, April 08 2014.

    Google Scholar 

  92. Gaynor, J. D.; Karakoti, A. S.; Inerbaev, T.; Sanghavi, S.; Nachimuthu, P.; Shutthanandan, V.; Seal, S.; Thevuthasan, S. Enzyme-free detection of hydrogen peroxide from cerium oxide nanoparticles immobilized on poly(4-vinylpyridine) self-assembled monolayers. J. Mater. Chem. B 2013, 1, 3443–3450.

    Google Scholar 

  93. Nouanthavong, S.; Nacapricha, D.; Henry, C. S.; Sameenoi, Y. Pesticide analysis using nanoceria-coated paper-based devices as a detection platform. Analyst 2016, 141, 1837–1846.

    Google Scholar 

  94. Xu, H.; Wu, P.; Zhu, C.; Elbaz, A.; Gu, Z. Z. Photonic crystal for gas sensing. J. Mater. Chem. C 2013, 1, 6087–6098.

    Google Scholar 

  95. Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S. H. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143–149.

    Google Scholar 

  96. Wang, H.; Zhang, K. Q. Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors 2013, 13, 4192–4213.

    Google Scholar 

  97. Aguirre, C. I.; Reguera, E.; Stein, A. Tunable colors in opals and inverse opal photonic crystals. Adv. Funct. Mater. 2010, 20, 2565–2578.

    Google Scholar 

  98. Potyrailo, R. A.; Ghiradella, H.; Vertiatchikh, A.; Dovidenko, K.; Cournoyer, J. R.; Olson, E. Morpho butterfly wing scales demonstrate highly selective vapour response. Nat. Photonics 2007, 1, 123–128.

    Google Scholar 

  99. Fudouzi, H. Tunable structural color in organisms and photonic materials for design of bioinspired materials. Sci. Technol. Adv. Mater. 2011, 12, 064704.

    Google Scholar 

  100. Seago, A. E.; Brady, P.; Vigneron, J. P.; Schultz, T. D. Gold bugs and beyond: A review of iridescence and structural colour mechanisms in beetles (Coleoptera). J. R. Soc. Interface 2009, 6, S165–S184.

    Google Scholar 

  101. Matsubara, K.; Watanabe, M.; Takeoka, Y. A thermally adjustable multicolor photochromic hydrogel. Angew. Chem., Int. Ed. 2007, 46, 1688–1692.

    Google Scholar 

  102. Shin, J.; Braun, P. V.; Lee, W. Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sens. Actuators B: Chem. 2010, 150, 183–190.

    Google Scholar 

  103. Shin, J.; Han, S. G.; Lee, W. Dually tunable inverse opal hydrogel colorimetric sensor with fast and reversible color changes. Sens. Actuators B: Chem. 2012, 168, 20–26.

    Google Scholar 

  104. Choi, S. Y.; Mamak, M.; von Freymann, G.; Chopra, N.; Ozin, G. A. Mesoporous bragg stack color tunable sensors. Nano Lett. 2006, 6, 2456–2461.

    Google Scholar 

  105. Zhou, J.; Wang, G. N.; Marquez, M.; Hu, Z. B. The formation of crystalline hydrogel films by self-crosslinking microgels. Soft Matter 2009, 5, 820–826.

    Google Scholar 

  106. Cui, Q. Z.; Wang, W.; Gu, B. H.; Liang, L. Y. A combined physicalchemical polymerization process for fabrication of nanoparticle-hydrogel sensing materials. Macromolecules 2012, 45, 8382–8386.

    Google Scholar 

  107. Ganter, P.; Szendrei, K.; Lotsch, B. V. Towards the nanosheet-based photonic nose: Vapor recognition and trace water sensing with antimony phosphate thin film devices. Adv. Mater. 2016, 28, 7436–7442.

    Google Scholar 

  108. Szendrei, K.; Ganter, P.; Sànchez-Sobrado, O.; Eger, R.; Kuhn, A.; Lotsch, B. V. Touchless optical finger motion tracking based on 2D nanosheets with giant moisture responsiveness. Adv. Mater. 2015, 27, 6341–6348.

    Google Scholar 

  109. Jia, X. L.; Wang, K.; Wang, J. Y.; Hu, Y. D.; Shen, L.; Zhu, J. T. Full-color photonic hydrogels for pH and ionic strength sensing. Eur. Polym. J. 2016, 83, 60–66.

    Google Scholar 

  110. Zhang, K.; Geissler, A.; Standhardt, M.; Mehlhase, S.; Gallei, M.; Chen, L. Q.; Thiele, C. M. Moisture-responsive films of cellulose stearoyl esters showing reversible shape transitions. Sci. Rep. 2015, 5, 12390.

    Google Scholar 

  111. Pavlichenko, I.; Exner, A. T.; Guehl, M.; Lugli, P.; Scarpa, G.; Lotsch, B. V. Humidity-enhanced thermally tunable TiO2/SiO2 Bragg stacks. J. Phys. Chem. C 2012, 116, 298–305.

    Google Scholar 

  112. Kang, Y.; Walish, J. J.; Gorishnyy, T.; Thomas, E. L. Broad-wavelengthrange chemically tunable block-copolymer photonic gels. Nat. Mater. 2007, 6, 957–960.

    Google Scholar 

  113. Yang, Q. Q.; Zhu, S. M.; Peng, W. H.; Yin, C.; Wang, W. L.; Gu, J. J.; Zhang, W.; Ma, J.; Deng, T.; Feng, C. L.; Zhang, D. Bioinspired fabrication of hierarchically structured, pH-tunable photonic crystals with unique transition. ACS Nano 2013, 7, 4911–4918.

    Google Scholar 

  114. Xu, J.; Guo, Z. G. Biomimetic photonic materials with tunable structural colors. J. Colloid Interface Sci. 2013, 406, 1–17.

    Google Scholar 

  115. Jiang, T.; Peng, Z. C.; Wu, W. J.; Shi, T. L.; Liao, G. L. Gas sensing using hierarchical micro/nanostructures of Morpho butterfly scales. Sens. Actuators A: Phys. 2014, 213, 63–69.

    Google Scholar 

  116. Lu, T.; Zhu, S. M.; Chen, Z. X.; Wang, W. L.; Zhang, W.; Zhang, D. Hierarchical photonic structured stimuli-responsive materials as highperformance colorimetric sensors. Nanoscale 2016, 8, 10316–10322.

    Google Scholar 

  117. Lagerwall, J. P. F.; Schütz, C.; Salajkova, M.; Noh, J.; Park, J. H.; Scalia, G.; Bergström, L. Cellulose nanocrystal-based materials: From liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater. 2014, 6, e80.

    Google Scholar 

  118. Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994.

    Google Scholar 

  119. Liu, D. G.; Wang, S.; Ma, Z. S.; Tian, D. L.; Gu, M. Y.; Lin, F. Y. Structure-color mechanism of iridescent cellulose nanocrystal films. RSC Adv. 2014, 4, 39322–39331.

    Google Scholar 

  120. Beck, S.; Bouchard, J.; Berry, R. Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromolecules 2011, 12, 167–172.

    Google Scholar 

  121. Cheung, C. C. Y.; Giese, M.; Kelly, J. A.; Hamad, W. Y.; MacLachlan, M. J. Iridescent chiral nematic cellulose nanocrystal/polymer composites assembled in organic solvents. ACS Macro Lett. 2013, 2, 1016–1020.

    Google Scholar 

  122. Bardet, R.; Belgacem, N.; Bras, J. Flexibility and color monitoring of cellulose nanocrystal iridescent solid films using anionic or neutral polymers. ACS Appl. Mater. Interfaces 2015, 7, 4010–4018.

    Google Scholar 

  123. Mu, X. Y.; Gray, D. G. Droplets of cellulose nanocrystal suspensions on drying give iridescent 3-D “coffee-stain” rings. Cellulose 2015, 22, 1103–1107.

    Google Scholar 

  124. Gray, D. G. Recent advances in chiral nematic structure and iridescent color of cellulose nanocrystal films. Nanomaterials 2016, 6, 213.

    Google Scholar 

  125. Dumanli, A. G.; van der Kooij, H. M.; Kamita, G.; Reisner, E.; Baumberg, J. J.; Steiner, U.; Vignolini, S. Digital color in cellulose nanocrystal films. ACS Appl. Mater. Interfaces 2014, 6, 12302–12306.

    Google Scholar 

  126. Gençer, A.; Schutz, C.; Thielemans, W. Influence of the particle concentration and marangoni flow on the formation of cellulose nanocrystal films. Langmuir 2017, 33, 228–234.

    Google Scholar 

  127. Mihranyan, A.; Llagostera, A. P.; Karmhag, R.; Strømme, M.; Ek, R. Moisture sorption by cellulose powders of varying crystallinity. Int. J. Pharm. 2004, 269, 433–442.

    Google Scholar 

  128. Kelly, J. A.; Shukaliak, A. M.; Cheung, C. C. Y.; Shopsowitz, K. E.; Hamad, W. Y.; MacLachlan, M. J. Responsive photonic hydrogels based on nanocrystalline cellulose. Angew. Chem., Int. Ed. 2013, 52, 8912–8916.

    Google Scholar 

  129. Bumbudsanpharoke, N.; Lee, W.; Chung, U.; Ko, S. Study of humidityresponsive behavior in chiral nematic cellulose nanocrystal films for colorimetric response. Cellulose 2018, 25, 305–317.

    Google Scholar 

  130. Habibi, Y. Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 2014, 43, 1519–1542.

    Google Scholar 

  131. Dujardin, E.; Blaseby, M.; Mann, S. Synthesis of mesoporous silica by sol–gel mineralisation of cellulose nanorod nematic suspensions. J. Mater. Chem. 2003, 13, 696–699.

    Google Scholar 

  132. Zhao, Y. J.; Shang, L. R.; Cheng, Y.; Gu, Z. Z. Spherical colloidal photonic crystals. Acc. Chem. Res. 2014, 47, 3632–3642.

    Google Scholar 

  133. Reese, C. E.; Mikhonin, A. V.; Kamenjicki, M.; Tikhonov, A.; Asher, S. A. Nanogel nanosecond photonic crystal optical switching. J. Am. Chem. Soc. 2004, 126, 1493–1496.

    Google Scholar 

  134. Chen, M.; Zhou, L.; Guan, Y.; Zhang, Y. J. Polymerized microgel colloidal crystals: Photonic hydrogels with tunable band gaps and fast response rates. Angew. Chem., Int. Ed. 2013, 52, 9961–9965.

    Google Scholar 

  135. Sun, S. T.; Wu, P. Y. A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks. J. Mater. Chem. 2011, 21, 4095–4097.

    Google Scholar 

  136. Blanford, C. F.; Schroden, R. C.; Al-Daous, M.; Stein, A. Tuning solventdependent color changes of three-dimensionally ordered macroporous (3DOM) materials through compositional and geometric modifications. Adv. Mater. 2001, 13, 26.

    Google Scholar 

  137. Kelly, J. A.; Shopsowitz, K. E.; Ahn, J. M.; Hamad, W. Y.; MacLachlan, M. J. Chiral nematic stained glass: Controlling the optical properties of nanocrystalline cellulose-templated materials. Langmuir 2012, 28, 17256–17262.

    Google Scholar 

  138. Borchert, N. B.; Kerry, J. P.; Papkovsky, D. B. A CO2 sensor based on Pt-porphyrin dye and FRET scheme for food packaging applications. Sens. Actuators B: Chem. 2013, 176, 157–165.

    Google Scholar 

  139. O’Riordan, T. C.; Voraberger, H.; Kerry, J. P.; Papkovsky, D. B. Study of migration of active components of phosphorescent oxygen sensors for food packaging applications. Anal. Chim. Acta 2005, 530, 135–141.

    Google Scholar 

  140. Kelly, C. A.; Cruz-Romero, M.; Kerry, J. P.; Papkovsky, D. B. Stability and safety assessment of phosphorescent oxygen sensors for use in food packaging applications. Chemosensors 2018, 6, 38.

    Google Scholar 

  141. Bumbudsanpharoke, N.; Ko, S. Nano-food packaging: An overview of market, migration research, and safety regulations. J. Food Sci. 2015, 80, R910–R923.

    Google Scholar 

  142. Garcia, C. V.; Shin, G. H.; Kim, J. T. Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations. Trends Food Sci. Technol., 2018, 82, 21–31.

    Google Scholar 

  143. Störmer, A.; Bott, J.; Kemmer, D.; Franz, R. Critical review of the migration potential of nanoparticles in food contact plastics. Trends Food Sci. Technol. 2017, 63, 39–50.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the International Joint R&D Program, the Agency for Korean National Food Cluster, Republic of Korea and in part by the Yonsei University Research Fund of 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seonghyuk Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bumbudsanpharoke, N., Ko, S. Nanomaterial-based optical indicators: Promise, opportunities, and challenges in the development of colorimetric systems for intelligent packaging. Nano Res. 12, 489–500 (2019). https://doi.org/10.1007/s12274-018-2237-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2237-z

Keywords

Navigation